The Effect of Sintering and Compaction Conditions on the Microstructure and Properties of AZ31 Magnesium Alloy
Subject Areas :
manufacturing planning
amin saghafi
1
*
,
Seyed Ehsan Eftekhari Shahri
2
,
Hossein Jamshidi
3
,
Mohammad Kazem Salari
4
,
Razieh Khoshhal
5
1 - Department of Mechanical Engineering,
Birjand University of Technology, Birjand, Iran
2 - Department of Mechanical Engineering,
Birjand University of Technology, Birjand, Iran
3 - Department of Mechanical Engineering,
Birjand University of Technology, Birjand, Iran
4 - Department of Mechanical Engineering,
Birjand University of Technology, Birjand, Iran
5 - Department of Materials and Metallurgical Engineering,
Birjand University of Technology, Birjand, Iran
Received: 2021-12-16
Accepted : 2022-04-23
Published : 2023-03-01
Keywords:
AZ31 magnesium alloy,
Microstructure,
Sintering,
Powder Metallurgy,
Abstract :
Magnesium and its alloys are attractive materials in industrial applications due to the low density and high strength. The properties of AZ31 magnesium alloy can be much improved by choosing proper sintering conditions. In this study, the microstructure and mechanical properties of AZ31 prepared by mechanical alloying, compaction, and sintering of elemental powder, were studied. The effect of parameters such as compaction pressure, heating rate, and sintering time were investigated to determine the optimal sintering condition of AZ31 magnesium alloys. Previous researches have focused on the specific conditions of sintering, while in this study, various factors of sintering were examined simultaneously. The results showed that sintering time is one of the major variables that have a considerable effect on the final properties of AZ31. In short sintering times, recrystallization leads to small grain formation inside the powder. However, as the sintering time increases, the growth of new grains slows down and no trace of them can be detected in the microstructure. Furthermore, the conditions for recrystallization were also determined, which can be used to provide small grain size and, consequently, better properties after the initial powder milling and sintering. At optimal sintering conditions, the average grain size, porosity percentage and hardness of the samples AZ31 magnesium alloy were obtained as 104 µm and 2.05%, and 79.5 HV, respectively which is expectable result in comparison to the bulk AZ31.
References:
Pollock, T. M., Weight Loss with Magnesium Alloys, Materials Science, Vol. 328, No. 5981, 2010, pp. 986-987, DOI: 1126/science.1182848.
Ren, L., Fan, L., Zhou, M., Guo, Y., Zhang, Y., Boehlert, C. J., and Quan, G., Magnesium Application in Railway Rolling Stocks: A New Challenge and Opportunity for Light Weighting, International Journal of Lightweight Materials and Manufacture, Vol. 1, No. 2, 2018, pp. 81-88, DOI:10.1016/j.ijlmm.2018.05.002.
Polmear, I. J., Metallurgy of the Light Metals, Light Alloys, Third ed., Edward Arnold, London, 1995.
Avedesian, M. M., Baker, H., ASM Specialty Handbook: Magnesium and Magnesium Alloys, ASM International, 1999.
Anyanwu, I. A., Kamado, S., and Kojima, Y., Aging Characteristics and High Temperature Tensile Properties of Mg-Gd-Y-Zr Alloys, Materials Transactions, Vol. 42, No. 7, 2001, pp. 1206-1211, DOI: 10.2320/matertrans.42.1206.
Watanabe, H., Mukai, T., Mabuchi, M., and Higashi, K., Superplastic Deformation Mechanism in Powder Metallurgy Magnesium Alloys and Composites, Acta Materialia, Vol. 49, No. 11, 2001, pp. 2027-2037, DOI:10.1016/S1359-6454(01)00101-X.
Watanabe, H., Mukai, T., Ishikawa, K., Mohri, T., Mabuchi, M., and Higashi, K., Superplasticity of a Particle-Strengthened WE43 Magnesium Alloy, Materials Transactions, Vol. 42, No. 1, 2001, pp. 157-162, DOI:10.2320/matertrans.42.157.
Watanabe, H., Mukai, T., Ishikawa, K., Mabuchi, M., and Higashi, K., Realization of High-Strain-Rate Superplasticity at Low Temperatures in a Mg–Zn–Zr alloy, Materials Science and Engineering: A, Vol. 307, No. 1-2, 2001, pp. 119-128, DOI: 10.1016/S0921-5093(00)01974-2.
Nieh, T. G., Schwartz, A. J., and Wadsworth, J., Superplasticity in a 17 Vol.% Sic Particulate-Reinforced ZK60A Magnesium Composite (ZK60/SiC/17p), Materials Science and Engineering: A, Vol. 208, 1996, pp. 30–36, DOI:10.1016/0921-5093(95)10060-1.
Mabuchi, M., Higashi, K., High-Strain-Rate Superplasticity in Magnesium Matrix Composites Containing Mg2Si Particles, Philosophical Magazine A, Vol. 74, No. 4, 1996, pp. 887-905, DOI: 10.1080/01418619608242166.
Agrawal, D., Microwave Sintering of Metal Powders, Advances in Powder Metallurgy: Properties, Processing and Applications, Elsevier Inc., 2013, pp. 361-379, DOI: 10.1533/9780857098900.3.361.
Straffelini, G., Nogueira, A. P., Muterlle, P., and Menapace, C., Spark Plasma Sintering and Hot Compression Behaviour of AZ91 Mg Alloy, Materials Science and Technology, Vol. 27, No. 10, 2011, pp. 1582-1587, DOI:10.1179/1743284710Y.0000000007.
Meng, F., Rosalie, J. M., Singh, A., and Tsuchiya, K., Precipitation Behavior of An Ultra-Fine Grained Mg–Zn Alloy Processed By High-Pressure Torsion, Materials Science and Engineering: A, Vol. 644, 2015, pp. 386-391, DOI:10.1016/j.msea.2015.07.086.
Brezina, M., Minda, J., Dolezal, P., Krystynova, M., Fintova, S., Zapletal, J., and Ptacek, P., Characterization of Powder Metallurgy Processed Pure Magnesium Materials for Biomedical Applications, Metals, Vol. 7, No. 11, 2017, pp. 461, DOI: 10.3390/met7110461.
Diatta, J., Antou, G., Courreges, F., Georges, M., Pradeilles, N., and Maitre, A., Effect of the Current Pulse Pattern During Heating in A Spark Plasma Sintering Device: Experimental and Numerical Modeling Approaches, Journal of Materials Processing Technology, Vol. 246, 2017, pp. 93-101, DOI: 10.1016/j.jmatprotec.2017.03.004.
Mondal, A., Upadhyaya, A., and Agrawal, D., Effect of Heating Mode and Sintering Temperature on The Consolidation of 90W–7Ni–3Fe Alloys, Journal of Alloys and Compounds, Vol. 509, No. 2, 2011, pp. 301-310, DOI: 10.1016/j.jallcom.2010.09.008.
Kim, K. R., Kim, H. S., Kwon, S. H., and Hwang, D. Y., The Effect of Sintering Pressure on The Microstructure and Properties of a Nanocrystalline Magnesium Alloy in Spark Plasma Sintering, Journal of the Korean Physical Society, Vol. 65, No. 10, 2014, pp. 1669-1674, DOI:10.3938/jkps.65.1669.
Mondet, M., Barraud, E., Lemonnier, S., Guyon, J. Allain, N., and Grosdidier, T., Microstructure and Mechanical Properties of AZ91 Magnesium Alloy Developed by Spark Plasma Sintering, Acta Mater. Vol. 119, 2016, pp. 55–67, DOI:10.1016/actamat.2016.08.006.
Burke, P., Kipouros, G. J. Development of Magnesium Powder Metallurgy AZ31 Alloy Using Commercially Available Powders, High Temperature Materials and Processes, Vol. 30, No. 1-2, 2011, pp. 51-61, DOI:10.1515/htmp.2011.007.
Minarik, P., Zemkova, M., Knapek, M., Sasek, S., Dittrich, J., Lukac, F., and Kral, R., Effect of Short Attritor-Milling of Magnesium Alloy Powder Prior to Spark Plasma Sintering, Materials, Vol. 13, No. 18, 2020, pp. 3973, DOI:10.3390/ma13183973.
Jayakumar, J., Raghunath, B. K., and Rao, T. H., Enhancing Microstructure and Mechanical Properties of AZ31-MWCNT Nanocomposites Through Mechanical Alloying, Advances in Materials Science and Engineering, Vol. 2013, 2013, Article ID 539027, DOI: 10.1155/2013/539027.
Galindez, Y., Correa, E., Zuleta, A. A., Valencia-Escobar, A., Calderon, D., Toro, L., Chacon, P., and Echeverria, F., Improved Mg–Al–Zn Magnesium Alloys Produced by High Energy Milling and Hot Sintering, Met. Mater. Int., Vol. 27, 2021, pp. 1113–1130, DOI: 10.1007/s12540-019-00490-1.
Grasso, S., Biesuz, M., Zoli, L., Taveri, G., Duff, A. I., Ke, D., Jiang, A., and Reece, M. J., A Review of Cold Sintering Processes, Advances in Applied Ceramics, Vol. 119, No. 3, 2020, pp. 115-143, DOI: 10.1080/17436753.2019.1706825.
Wolff, M., Ebel, T., and Dahms, M., Sintering of Magnesium, Advanced Engineering Materials, Vol. 12, No. 9, 2010, pp. 829-836, DOI: 10.1002/adem.201000038.