• Home
  • Mohammad Ghodrati

    List of Articles Mohammad Ghodrati


  • Article

    1 - ZnO/WO3 nanocomposites: Pechini sol-gel synthesis, characterization, and photocatalytic performance for desulfurization of thiophene
    Journal of Nanoanalysis , Issue 500 , Year 1 , Winter 2050
    In recent decades, considerable research about the destruction of hazardous pollutants sulfur from petroleum products was conducted. However, reforms in this area have not been satisfactory and efforts are ongoing. The aim of this study was to investigate and overcome t More
    In recent decades, considerable research about the destruction of hazardous pollutants sulfur from petroleum products was conducted. However, reforms in this area have not been satisfactory and efforts are ongoing. The aim of this study was to investigate and overcome thiophene sulfur contaminants using high purity synthesized ZnO/WO3 nanocomposite and homogeneous composition by Pechini sol-gel method at low temperature. Zinc oxide is one of the most dynamic elements known in this field, its presence together with tungsten oxide prevents the crystallization of tungsten nanoparticles. Fuzzy structure, percentage of elements, surface morphology, penetration reflection spectrum, and photocatalytic degradation of thiophene were determined by XRD, EDS, SEM, and DRS analyzes, respectively. DRS results indicate high light absorption, reduced bandgap due to the presence of WO3 after combination with ZnO, and increased efficiency. Finally, the nanocomposite with more than 84% efficiency resulted in the degradation of oxidative desulfurization of thiophene after 150 min under visible light. Manuscript profile

  • Article

    2 - Pechini Sol-Gel Synthesis and Characterization of NiWO4/W5O14/WO3 Nanocomposite for Photocatalytic Desulfurization of Thiophene
    Journal of Nanoanalysis , Issue 1 , Year , Winter 2022
    One of the most important problems in the oil industry is the presence of sulfur and sulfur compounds in crude oil. Sulfur compounds in crude oil can have detrimental effects on the environment, equipment, catalysts, and end products. One of the most important goals of More
    One of the most important problems in the oil industry is the presence of sulfur and sulfur compounds in crude oil. Sulfur compounds in crude oil can have detrimental effects on the environment, equipment, catalysts, and end products. One of the most important goals of researchers in recent years is to sweeten petroleum products from these compounds. This study aims to use NiWO4/W5O14/WO3 composite nanostructure to solve this problem using the photocatalytic oxidative desulfurization method. This composite nanostructure has been synthesized by Pechini sol-gel method with high purity at low temperature and examined by XRD, EDS, FESEM, and FT-IR analysis. Due to the presence of WO3 in the composition, the bandgap was greatly reduced and the efficiency was increased. As a result, the nanostructure could degrade more than 73% of the sulfur in thiophene in 180 min under visible light. By optimizing the amount of photocatalyst and irradiation time, the efficiency can be improved. Manuscript profile

  • Article

    3 - ZnO/WO3 nanocomposites: Pechini sol-gel synthesis, characterization, and photocatalytic performance for desulfurization of thiophene
    Journal of Nanoanalysis , Issue 5 , Year , Autumn 2021
    The aim of this study was to investigate and overcome thiophene sulfurcontaminants using high purity synthesized ZnO/WO3 nanocomposite andhomogeneous composition by Pechini sol-gel method at low temperature.Zinc oxide is one of the most dynamic elements known in this fi More
    The aim of this study was to investigate and overcome thiophene sulfurcontaminants using high purity synthesized ZnO/WO3 nanocomposite andhomogeneous composition by Pechini sol-gel method at low temperature.Zinc oxide is one of the most dynamic elements known in this field, itspresence together with tungsten oxide prevents the crystallization of tungstennanoparticles. Fuzzy structure, percentage of elements, surface morphology,penetration reflection spectrum, and photocatalytic degradation of thiophenewere determined by XRD, EDS, SEM, and DRS analyses, respectively. DRS resultsindicate high light absorption, reduced bandgap due to the presence of WO3 aftercombination with ZnO, and increased efficiency. Finally, the nanocomposite withmore than 84% efficiency resulted in the degradation of oxidative desulfurizationof thiophene after 150 min under visible light. Manuscript profile