• Home
  • Bahareh Kamyab Moghadas

    List of Articles Bahareh Kamyab Moghadas


  • Article

    1 - A soft tissue fabricated using freeze-drying technique with carboxymethyl chitosan and nanoparticles for promoting effects on wound healing
    Journal of Nanoanalysis , Upcoming Articles
    Many people suffer from skin injuries due to various problems such as burns and accidents. Therefore, it is essential to shorten treatment time and providing strategies that can control the progression of the wound that would be effective in wound healing process and al More
    Many people suffer from skin injuries due to various problems such as burns and accidents. Therefore, it is essential to shorten treatment time and providing strategies that can control the progression of the wound that would be effective in wound healing process and also reduce its economic costs. Materials and Methods: The present study aimed to prepare a nanocomposite dressing (NCD) composed of carboxymethyl chitosan (CMC), and Fe2O3 nanoparticles by a method called freeze-drying (FD) technique. The biological response in the physiological saline was performed to determine the rate of degradation of NCD in phosphate buffer saline (PBS) for a specific time. Results & Discussion: The obtained results demonstrated that the wound dress was porous architecture with micron-size interconnections. In fact, according to the results, as the magnetite nanoparticles amount increases, the porosity increases too. On the other hand, the tensile strength was 0.32 and 0.85 MPa for the pure sample and the sample containing the highest percentage of magnetic nanoparticles, respectively. Besides, the cytotoxicity of this nanocomposite was determined by MTT assays for 7 days and showed no cytotoxicity toward the growth of fibroblasts cells and had proper in vitro biocompatibility. The obtained results revealed that NCD had remarkable biodegradability, biocompatibility, and mechanical properties. Therefore, NCD composed of CMC and Fe2O3 nanoparticle was introduced as a promising candidate for wound healing applications. Conclusion: According to the obtained results, the optimum NCD specimen with 5 wt% Fe2O3 has the best mechanical and biological properties. Manuscript profile

  • Article

    2 - Potential of magnetite nanoparticles with biopolymers loaded with gentamicin drug for bone cancer treatment
    Journal of Nanoanalysis , Upcoming Articles
    Objective (s) Due to the natural bone microstructure, the design and fabrication of porous ceramic scaffold nanocomposite materials coated with thin layer of a natural polymer can provide an ideal scaffold for bone tissue engineering. This study aimed to fabricate multi More
    Objective (s) Due to the natural bone microstructure, the design and fabrication of porous ceramic scaffold nanocomposite materials coated with thin layer of a natural polymer can provide an ideal scaffold for bone tissue engineering. This study aimed to fabricate multi-component porous magnetic scaffolds by freeze- drying (FD) technique using a gelatin polymer layer coated with a gentamicin drug. Materials and Methods: Magnetic nanoparticles (MNPs) can be manipulated and controlled by an external magnetic field gradient (EMFG) that is inherent in the magnetic field's permeability within human tissues. In the present work, unlike the usual ceramic/polymer composite scaffold, the ceramic components and the magnet were placed together in the reaction medium from the beginning, and bioceramics were replaced in the composite polymer network and then coated with a drug-loaded polymer. To evaluate the morphology of the magnetic scaffold, scanning electron microscopy (SEM) was utilized to evaluate the microstructure and observe the porosity of the porous tissue. Results and Discussion: After analyzing the SEM images, the porosity of the scaffolds was measured, which was similar to the normal bone architecture. Also, the porosity value increased from 55% to 78% with addition of MNPs to the based matrix. Conclusion: The results of this study showed that gentamicin-gelatin-coated on porous ceramic-magnet composite scaffolds could be used in bone tissue engineering and apply for treatment of bone tumors, because of their similarity to the bone structure with good porosity. Manuscript profile

  • Article

    3 - Potential of magnetite nanoparticles with biopolymers loaded with gentamicin drug for bone cancer treatment
    Journal of Nanoanalysis , Issue 4 , Year , Summer 2021
    Objective(s): Due to the natural bone microstructure, the design and fabrication ofporous ceramic scaffold nanocomposite materials coated with a thin layer of a naturalthe polymer can provide an ideal scaffold for bone tissue engineering. This study aimed tofabricate mu More
    Objective(s): Due to the natural bone microstructure, the design and fabrication ofporous ceramic scaffold nanocomposite materials coated with a thin layer of a naturalthe polymer can provide an ideal scaffold for bone tissue engineering. This study aimed tofabricate multi-component porous magnetic scaffolds by freeze-drying (FD) techniqueusing a gelatin polymer layer coated with a gentamicin drug.Methods: Magnetic nanoparticles (MNPs) can be manipulated and controlled byan external magnetic field gradient (EMFG) that is inherent in the magnetic field'spermeability within human tissues. In the present work, unlike the usual ceramic/polymer composite scaffold, the ceramic components, and the magnet were placedtogether in the reaction medium from the beginning, and bioceramics were replacedin the composite polymer network and then coated with a drug-loaded polymer. Toevaluate the morphology of the magnetic scaffold, scanning electron microscopy(SEM) was utilized to evaluate the microstructure and observe the porosity of theporous tissue.Results: After analyzing the SEM images, the porosity of the scaffolds was measured,which was similar to the normal bone architecture. The addition of gentamicin tothe gelation was investigated to monitor the drug delivery reaction in the biologicalenvironment. The magnetic properties of the sample were evaluated using thehyperthermia test for 15 seconds at the adiabatic conditions. Also, the porosity valueincreased from 55% to 78% with the addition of MNPs to the based matrix.Conclusions: The results of this study showed that gentamicin-gelatin-coated onporous ceramic-magnet composite scaffolds could be used in bone tissue engineeringand apply for treatment of bone tumors, because of their similarity to the bonestructure with good porosity. Manuscript profile

  • Article

    4 - A soft tissue fabricated using a freeze-drying technique with carboxymethyl chitosan and nanoparticles for promoting effects on wound healing
    Journal of Nanoanalysis , Issue 5 , Year , Autumn 2020
    Objective(s): Many people suffer from skin injuries due to various problems such asburns and accidents. Therefore, it is essential to shorten treatment time and providingstrategies that can control the progression of the wound that would be effective inwound healing pro More
    Objective(s): Many people suffer from skin injuries due to various problems such asburns and accidents. Therefore, it is essential to shorten treatment time and providingstrategies that can control the progression of the wound that would be effective inwound healing process and also reduce its economic costs.Methods: The present study aimed to prepare a nanocomposite dressing (NCD)composed of carboxymethyl chitosan (CMC), and Fe2O3 nanoparticles by a methodcalled freeze-drying (FD) technique. The effect of different weight percentages ofFe2O3 (0, 2.5, 5, and 7.5 wt%) reinforcement on mechanical and biological propertiessuch as tensile strength, biodegradability, and cell behavior was evaluated. Also, theX-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis were used tocharacterize the soft porous membrane. The biological response in the physiologicalsaline was performed to determine the rate of degradation of NCD in phosphatebuffer saline (PBS) for a specific time.Results: The obtained results demonstrated that the wound dress was porousarchitecture with micron-size interconnections. In fact, according to the results, asthe magnetite nanoparticles amount increases, the porosity increases too. On theother hand, the tensile strength was 0.32 and 0.85 MPa for the pure sample and thesample containing the highest percentage of magnetic nanoparticles, respectively.Besides, the cytotoxicity of this nanocomposite was determined by MTT assays for 7days and showed no cytotoxicity toward the growth of fibroblasts cells and had properin vitro biocompatibility. The obtained results revealed that NCD had remarkablebiodegradability, biocompatibility, and mechanical properties. Therefore, NCDcomposed of CMC and Fe2O3 nanoparticles was introduced as a promising candidatefor wound healing applications.Conclusions: According to the obtained results, the optimum NCD specimen with 5wt% Fe2O3 has the best mechanical and biological properties. Manuscript profile