• Home
  • Shashank Soni

    List of Articles Shashank Soni


  • Article

    1 - Vibration, Buckling and Deflection Analysis of Cracked Thin Magneto Electro Elastic Plate Under Thermal Environment
    Journal of Solid Mechanics , Issue 2 , Year , Spring 2019
    The Magneto-Electro-Elastic (MEE) material exhibits pyroelectric and pyromagnetic effects under thermal environment. The effects of such pyroelectric and pyromagnetic behavior on vibration, buckling and deflection analysis of partially cracked thin MEE plate is presente More
    The Magneto-Electro-Elastic (MEE) material exhibits pyroelectric and pyromagnetic effects under thermal environment. The effects of such pyroelectric and pyromagnetic behavior on vibration, buckling and deflection analysis of partially cracked thin MEE plate is presented and discussed in this paper. The aim of the study is to develop an analytical model for the vibration and geometrically linear thermal buckling analysis of cracked MEE plate based on the classical plate theory (CPT). The line spring model (LSM) is modified for the crack terms to accommodate the effect of electric and magnetic field rigidities, whereas the effect of thermal environment is accommodated in the form of thermal moment and in-plane forces. A classical relation for thermal buckling phenomenon of cracked MEE plate is also proposed. The governing equation for cracked MEE plate has also been solved to get central deflection which shows an important phenomenon of shift in primary resonance due to crack and temperature rise. The results evaluated for natural frequencies as affected by crack length, plate aspect ratio and critical buckling temperature are presented for first four modes of vibration. The obtained results reveal that the fundamental frequency of the cracked plate decreases with increase in temperature and crack length. Furthermore the variation of the critical buckling temperature with plate aspect ratio and crack length is also established for different modes of vibration. Manuscript profile

  • Article

    2 - Effect of Thermal Environment on Vibration Analysis of Partially Cracked Thin Isotropic Plate Submerged in Fluid
    Journal of Solid Mechanics , Issue 1 , Year , Winter 2019
    Based on a non classical plate theory, an analytical model is proposed for the first time to analyze free vibration problem of partially cracked thin isotropic submerged plate in the presence of thermal environment. The governing equation for the cracked plate is derive More
    Based on a non classical plate theory, an analytical model is proposed for the first time to analyze free vibration problem of partially cracked thin isotropic submerged plate in the presence of thermal environment. The governing equation for the cracked plate is derived using the Kirchhoff’s thin plate theory and the modified couple stress theory. The crack terms are formulated using simplified line spring model whereas the effect of thermal environment is introduced using thermal moments and in-plane forces. The influence of fluidic medium is incorporated in governing equation in form fluids forces associated with inertial effects of its surrounding fluids. Applying the Galerkin’s method, the derived governing equation of motion is reformulated into well known Duffing equation. The governing equation for cracked isotropic plate has also been solved to get central deflection which shows an important phenomenon of shift in primary resonance due to crack, temperature rise and internal material length scale parameter. To demonstrate the accuracy of the present model, few comparison studies are carried out with the published literature. The variation in natural frequency of the cracked plate with uniform rise in temperature is studied considering various parameters such as crack length, fluid level and internal material length scale parameter. Furthermore the variation of the natural frequency with plate thickness is also established. Manuscript profile