• Home
  • سید محمدرضا خلیلی

    List of Articles سید محمدرضا خلیلی


  • Article

    1 - Behavior of Lightweight Smart Sandwich Panels Subjected to Tensile and Bending Loads- An Experimental Study
    International Journal of Advanced Design and Manufacturing Technology , Issue 59 , Year , Spring 2024
    In this research work, sandwich composite panels made by fiber metal laminate (FML) as the facesheets and polymer foams as the core material are investigated in tensile and bending loads. To change or enhance the behaviour of sandwich panels in tensile and bending loads More
    In this research work, sandwich composite panels made by fiber metal laminate (FML) as the facesheets and polymer foams as the core material are investigated in tensile and bending loads. To change or enhance the behaviour of sandwich panels in tensile and bending loads, shape memory alloy wires with pseudoelastic behaviour are also embedded in between FML layers in facesheets. The shape memory wires are also pre-strained in the FML facesheets of sandwich panels. To study the tensile and flexural properties of sandwich panels with smart FML facesheets three types of sandwich panels are considered and made including panels without shape memory alloy wire, panels with shape memory wires with 0% tensile pre-strain, and panels with shape memory wires with 5% tensile pre-strain for the same cross section. By placing SMA wires in the FML, the strength and stiffness of the smart sandwich specimens are increased significantly in tensile and bending loads. However, the effect of pre-straining the SMA wires is more predominant on stiffness of the specimens. The tensile and flexural toughness or energy absorption is much higher in case of the specimen with 5% pre-strained SMA wires. At the expenses of adding the SMA wires in the sandwich structures, the densities of various specimens are changed by nearly 1% to 5% for various specimens, but a significant increase in mechanical properties such as the strength and particularly the stiffness and toughness were achieved by the present lightweight smart sandwich structures. Manuscript profile