• Home
  • Hossein Rahimi Asiabaraki

    List of Articles Hossein Rahimi Asiabaraki


  • Article

    1 - Impact of FSP Tool Probe Shape on Reinforcing Particles Dispersion in the Piston Alloy Using CEL Approach
    Journal of Modern Processes in Manufacturing and Production , Issue 5 , Year , Autumn 2022
    In this study, the distribution of boron carbide in the stir zone of the FSPed specimens was examined experimentally and numerically about probe shape, including circular, square, and hexagonal shapes. First, composites were created using different tools. Then, using an More
    In this study, the distribution of boron carbide in the stir zone of the FSPed specimens was examined experimentally and numerically about probe shape, including circular, square, and hexagonal shapes. First, composites were created using different tools. Then, using an optical microscope, the microstructural properties of the samples, such as the size and shape of the silicon particles, were examined. To simulate the procedure and further explore particle distribution, the coupled Eulerian-Lagrangian (CEL) method is employed. The tool was also modeled using a Lagrangian formulation while the material was characterized using an Eulerian formulation. The model predicted the changes in strain and temperature in composites created with different probe shapes. The outcome demonstrated that the circular probe was not suitable for the production of composites because it could not disperse particles in the parent alloy. Tools with flat surfaces, such as square and hexagonal tools, have more evenly distributed metal particles. Square probes can be employed in the FSP process to create composites and offer the best performance in terms of reinforcing particle distribution in the metal matrix. Due to the greater distribution of reinforcing particles, the sample made with a square tool had the highest hardness. Using a tool with a square pin improves the average hardness by 8 and 21%, respectively, compared to hexagonal and circular tools. Manuscript profile

  • Article

    2 - Analyzing Thermomechanical Characteristics: A Comparative Study of Stationary Shoulder FSW and Conventional FSW
    Journal of Modern Processes in Manufacturing and Production , Issue 4 , Year , Autumn 2023
    Friction Stir Welding has significantly transformed the metal joining industry, and an innovative variation known as stationary shoulder FSW has emerged. This study aimed to compare various aspects, including force, temperature, and strain, between conventional friction More
    Friction Stir Welding has significantly transformed the metal joining industry, and an innovative variation known as stationary shoulder FSW has emerged. This study aimed to compare various aspects, including force, temperature, and strain, between conventional friction stir welding (CFSW) and stationary shoulder friction stir welding (SSFSW). To accomplish this, the finite element method was employed, utilizing the lagrangian technique to model the welding process. The findings revealed that in SSFSW, the highest temperature was observed in the vicinity of the rotating pin. This was attributed to the absence of a rotating shoulder in SSFSW, which played a major role in heat generation during welding. Moreover, the longitudinal forces on the tool in SSFSW were significantly higher compared to CFSW, approximately ten times greater. In the CFSW process, the affected area showing strain usually forms a basin-shaped pattern. However, in the SSFSW process, the strain distribution is confined within the range of the tool pin. Manuscript profile