List of Articles Ali Deylami


  • Article

    1 - Stability of Robust Lyapunov Based Control of Flexible-Joint Robots Using Voltage Control Strategy Revisited
    Journal of Modern Processes in Manufacturing and Production , Issue 5 , Year , Autumn 2021
    Many advanced robot applications such as assembly and manufacturing require mechanical interaction of the robot manipulator with the environment. Any back-stepping based control strategy proposed for position control of electrical flexible joint robots requires a conver More
    Many advanced robot applications such as assembly and manufacturing require mechanical interaction of the robot manipulator with the environment. Any back-stepping based control strategy proposed for position control of electrical flexible joint robots requires a convergence of internal signals to its desired value called a fictitious control signal. This problem is complicated and time-consuming, whereas a 5th-order nonlinear differential equation describes each joint of the robot. The best idea is to focus on the convergence of main signals while the other signals in the system remain bounded. With this in mind, this paper present a robust Lyapunov-based controller for the flexible joint electrically driven robot (FJER) considering input nonlinearities associated with actuator constraints. It also finds uncertainties associated with robot dynamics. The proposed approach is based on a third-order model instead of a fifth-order model of the robotic system. The stability is guaranteed in the presence of both structured and unstructured uncertainties. The actuator/link position errors asymptotically converge to zero while the other signals are bounded. Simulation results on a 2-DOF electrical robot manipulator effectively verify the efficiency of the proposed strategy. Manuscript profile

  • Article

    2 - Tracking Control of Robots Revisited Based on Taylor Series and Asymptotic Expansion
    Journal of Modern Processes in Manufacturing and Production , Issue 2 , Year , Spring 2021
    This paper points out some errors based on the one-dimensional Taylor series for a multi-dimensional function that is used for robots manufacturing. It is argued that the proof of theorem 1 is not mathematically true, and consequently, the obtained results cannot be cor More
    This paper points out some errors based on the one-dimensional Taylor series for a multi-dimensional function that is used for robots manufacturing. It is argued that the proof of theorem 1 is not mathematically true, and consequently, the obtained results cannot be correct. In addition to this, the stability analysis presented in the paper does not address the saturated area properly. Therein, stability is analyzed separately in saturated and unsaturated operation areas. However, the stability of the closed-loop system may not be guaranteed through these separate analyses, since transitions from saturation area to unsaturated area and vice versa are neglected. This work is an extension of the above paper, based on the revised Taylor series and considering actuator saturation limit in both controller design and stability analysis. Manuscript profile