• Home
  • iman ebrahimzadeh

    List of Articles iman ebrahimzadeh


  • Article

    1 - An investigation on Al6061/TiB2 nano composites production through Mechanical Alloying route and their corrosion behavior
    Journal of Advanced Materials and Processing , Issue 2 , Year , Spring 2018
    Aluminum-based alloy composites with high strength and low density can be used in corrosive environments. In this research, the nano-powders of A16061 alloy and A16061/TiB2 composite were synthesized by mechanical alloying (MA) method. Then, A16061 /TiB2 nano-composite More
    Aluminum-based alloy composites with high strength and low density can be used in corrosive environments. In this research, the nano-powders of A16061 alloy and A16061/TiB2 composite were synthesized by mechanical alloying (MA) method. Then, A16061 /TiB2 nano-composite bulk samples were prepared at laboratory scale by hot extrusion approach. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) devices were respectively used for measurement of particles and grains, and the polarization test was employed to assess the corrosion behavior of A16061 /TiB2 nano-composites. The grains size of hot extrusion samples were calculated as about 95 nm. Uniform corrosion behavior and pitting of the produced nano samples of MA6061 /1.25 TiB2 have higher corrosion resistance compared to the alloy samples of MA6061.3. The uniform corrosion in the 2MA-Al-6061/1.25TiB2 composite had the lowest rate compared to other samples.The sensitivity of this alloy to pitting corrosion has raised compared to the melting state; however, this sensitivity is less than the alloy made by mechanical alloying method. Manuscript profile

  • Article

    2 - Effect of Bonding Time on Microstructure and Mechanical Properties of Transient Liquid Phase Bonding Between WC-Co/St52
    Journal of Advanced Materials and Processing , Issue 1 , Year , Winter 2023
    WC-Co and St52 were joined using the TLP method. The joining process was carried out at 1050 °C for different times using a BNi-2 interlayer. After the joining process, the microstructure of the bonded samples was examined using a scanning electron microscope equipped w More
    WC-Co and St52 were joined using the TLP method. The joining process was carried out at 1050 °C for different times using a BNi-2 interlayer. After the joining process, the microstructure of the bonded samples was examined using a scanning electron microscope equipped with energy-dispersive X-ray spectroscopy. X-ray diffraction analysis was also used to investigate the effects of bonding parameters on the phase transformations of the bonding region. The results of the investigations showed that in the isothermal solidification zone, the Ni-base solid solution phase was observed in all samples. Also, the η phase (Co6W6C) was formed in the diffusion affected zone of the WC-Co base material. The size of the produced zones in the bonding region depended on the time of the bonding process, and with the change in the bonding time, the size of these zones also changed. The hardness profile for all samples had the same trend and the maximum hardness was related to WC-Co base material (around 1100 HV) and the hardness in the isothermal solidification zone was about 380 HV. The maximum shear strength was related to the bonded sample at 30 min, about 320 MPa, which was due to the removal and damping of residual stresses by the isothermal solidification zone. The mode of failure in all samples was brittle-ductile. Manuscript profile