• Home
  • Ghafar Darvish

    List of Articles Ghafar Darvish


  • Article

    1 - The effect of structural defects on the electron transport of MoS2 nanoribbons based on density functional theory
    Journal of Theoretical and Applied Physics , Issue 1 , Year , Winter 2019
    AbstractUsing non-equilibrium Green’s function method and density functional theory, we study the effect of line structural defects on the electron transport of zigzag molybdenum disulfide (MoS2) nanoribbons. Here, the various types of non-stoichiometric line defects gr More
    AbstractUsing non-equilibrium Green’s function method and density functional theory, we study the effect of line structural defects on the electron transport of zigzag molybdenum disulfide (MoS2) nanoribbons. Here, the various types of non-stoichiometric line defects greatly affect the electron conductance of MoS2 nanoribbons. Although such defects would be lead to the electron scattering, they can increase the transmission of charge carriers by creating new channels. In addition, the presence of S bridge defect in the zigzag MoS2 nanoribbon leads to more the transmission of charge carriers in comparison with the Mo–Mo bond defect. Also, we find that the different atomic orbitals and their bonding structure at the edge affect the electron conductance of MoS2 nanoribbons. Moreover, we calculate the spin-dependent transport of MoS2 nanoribbons and showed that the spin polarization increases at the non-zigzag edges and remains even in the presence of the defect. This study presents a deep understanding of created properties in MoS2 nanoribbons due to the presence of structural defects. Manuscript profile

  • Article

    2 - Dynamics of a low-threshold optically pumped organic vertical-cavity surface-emitting laser
    Journal of Theoretical and Applied Physics , Issue 1 , Year , Spring 2016
    AbstractWe propose a low-threshold optically pumped organic vertical-cavity surface-emitting laser (OVCSEL). This device has the capability to apply both electrical and optical excitation. The microcavity structure consists of an organic light emitting diode with field- More
    AbstractWe propose a low-threshold optically pumped organic vertical-cavity surface-emitting laser (OVCSEL). This device has the capability to apply both electrical and optical excitation. The microcavity structure consists of an organic light emitting diode with field-effect electron transport inserted in a high-quality factor double distributed Bragg reflector. The simulated quality factor of the microcavity is shown to be as high as 16,000. Also, we investigate threshold behaviour and the dynamics of the optically pumped OVCSEL with sub-picosecond pulses. Results from numerical simulation show that lasing threshold is 12.8 pJ/0.64 µJ cm−2 when pumped by sub-picosecond pulses of λ = 400 nm wavelength light. Manuscript profile