• Home
  • Mohaned  Mohammed Hani

    List of Articles Mohaned  Mohammed Hani


  • Article

    1 - Optimization of Phenolic Compound Extraction from Pistachio Green Hulls: Influence of Blanching, Harvest Time, Solvent Concentration, and Extraction Method
    Journal of Nuts , Issue 3 , Year , Summer 2024
    The processing of pistachios results in the generation of a substantial byproduct in the form of underutilized pistachio green hulls. This study aims to identify the most effective strategies for extracting beneficial phenolic compounds from these hulls. The impact of b More
    The processing of pistachios results in the generation of a substantial byproduct in the form of underutilized pistachio green hulls. This study aims to identify the most effective strategies for extracting beneficial phenolic compounds from these hulls. The impact of blanching, harvest timing, solvent concentration, and extraction methods on the extraction process was meticulously investigated. The pistachio green hulls were harvested at varying maturation stages during July, August, and September, with blanching achieved through heating the hulls at 80°C for 6 minutes. Extraction procedures involved the use of 100%, 75%, and 50% methanol concentrations, employing techniques such as percolation, Soxhlet, ultrasonic-assisted, and microwave-assisted extraction methods. Quantification of the total phenolic content was conducted using the Folin-Ciocalteu assay. The highest phenolic content was observed in green hulls harvested pre-maturity in July (1887.75mg GAE per 100g), surpassing the content from August and September harvests significantly. Blanching led to a 12% increase in phenolic yield compared to unblanched green hulls. Extraction using 50% methanol resulted in a 46% higher phenolic content compared to 100% methanol extraction. Among the extraction techniques, microwave-assisted extraction demonstrated the highest phenolic yield (3085.30mg GAE per 100g), outperforming other methods significantly. Percolation duration of 5 hours was identified as optimal. These results underscore the significant influence of early harvesting, blanching pretreatment, moderate solvent concentrations, and microwave irradiation in optimizing phenolic extraction from pistachio green hulls. The findings put forth novel insights into the sustainable utilization of abundant pistachio byproducts for the extraction of health-promoting antioxidants. Manuscript profile

  • Article

    2 - Alleviating Salinity Stress in Almond Plants through Rhizophagus irregularis Inoculation: A Greenhouse Study
    Journal of Nuts , Upcoming Articles
    Soil salinity significantly limits crop productivity. This study explores the role of the mycorrhizal fungus Rhizophagus irregularis (Ri) in enhancing the antioxidant system and pigment concentrations in almond plants (Prunus dulcis) under salinity stress, aiming to red More
    Soil salinity significantly limits crop productivity. This study explores the role of the mycorrhizal fungus Rhizophagus irregularis (Ri) in enhancing the antioxidant system and pigment concentrations in almond plants (Prunus dulcis) under salinity stress, aiming to reduce salt-induced toxicity and offer potential solutions for saline agriculture. The experiment used almond seeds grown under varying salinity levels (0, 25, 50, and 100 mM NaCl) and Ri inoculation. Parameters including root colonization percentage, growth parameters, plant pigment concentrations, and antioxidant enzyme activity were analyzed. Results revealed that salinity significantly impacted all parameters, with a notable reduction in both wet and dry weights of shoots and roots as salinity increased. Shoot dry weight decreased from 1.87 g to 0.58 g in Ri plants and from 1.39 g to 0.60 g in non-Ri plants as salinity increased from 0 to 100 mM NaCl. Additionally, root colonization by Ri showed a significant decrease from 47.12% under non-saline conditions to 8.23% under high salinity (100 mM NaCl). Ri treatment had a significant effect on several parameters except for carotenoid levels and catalase enzyme activity. For instance, Ri inoculation resulted in increased chlorophyll levels (from 3.57 mg g-1 to 4.78 mg g-1 in control plants and from 1.58 mg g-1 to 2.21 mg g-1 under high salinity) and flavonoid quantities (from 4.78 mg g-1 to 5.80 mg g-1 in control plants and from 6.46 mg g-1 to 6.68 mg g-1 under high salinity) compared to non-inoculated plants, irrespective of salinity conditions. The data also demonstrated that salinity was the primary determinant of catalase enzyme activity in both shoot and root tissues, with a corresponding increase in catalase activity as salinity increased. For instance, shoot catalase activity increased from 1.30 mg protein min-1 to 2.35 mg protein min-1 in Ri plants and from 1.16 mg protein min-1 to 2.24 mg protein min-1 in non-Ri plants with increasing salinity. In conclusion, Ri inoculation can potentially mitigate the adverse effects of salinity in almond plants by enhancing certain growth parameters and antioxidant activity, as indicated by the statistically significant interactions between salinity and Ri. Manuscript profile

  • Article

    3 - Investigating the Role of Oregano and Cumin Essential Oils in Curbing Aspergillus flavus Growth in Almonds
    Journal of Nuts , Issue 3 , Year , Summer 2024
    This study explores the antifungal efficacy of oregano and cumin essential oils against Aspergillus flavus in almonds. Our findings revealed that oregano oil at a concentration of 150 µg l-1 was significantly more effective in inhibiting Aspergillus flavus growth than c More
    This study explores the antifungal efficacy of oregano and cumin essential oils against Aspergillus flavus in almonds. Our findings revealed that oregano oil at a concentration of 150 µg l-1 was significantly more effective in inhibiting Aspergillus flavus growth than cumin oil at 300 µg l-1. After a 10-day incubation period, almonds treated with oregano oil exhibited an average fungal infection rate of just 5%, compared to 58% for cumin oil-treated almonds, and a high 95% in untreated control samples. This indicates a remarkable 94% reduction in Aspergillus flavus growth for oregano oil-treated almonds in comparison to the control group. In contrast, cumin oil showed a 39% decrease in fungal contamination relative to the control, demonstrating its lesser but notable antifungal potential. The study also found that almonds with dry peel had lower mold contamination rates than those with green peel when treated with these essential oils, highlighting the protective role of the hardened endocarp. Thirteen panellists rated almond qualities using a 9-point scale. Cumin oil treated almonds had higher aroma and flavor ratings than oregano oil and control almonds. Cumin offered a spicy aroma and harmonious flavor, while oregano had a medicinal aroma and bitter taste. Cumin effectively inhibited fungal growth and maintained almond quality. Sensory analysis showed a consumer preference for the aroma and taste of cumin oil-treated almonds, despite the lower antifungal efficacy. Overall, this research underscores the potential of oregano and cumin essential oils as sustainable alternatives to synthetic preservatives in controlling Aspergillus flavus infection in almonds post-harvest. Manuscript profile