• Home
  • ismail muhibbu-din

    List of Articles ismail muhibbu-din


  • Article

    1 - Investigation of Ambient Aromatic Volatile Organic Compounds in Mosimi Petroleum Products Depot, Sagamu, Nigeria
    Anthropogenic Pollution , Issue 1 , Year , Winter 2020
    Among chemical industries, petroleum depots have been identified as large emitters of Volatile Organic Compounds (VOCs).They affect air quality and constitute serious health and environmental problems on the ecosystem. Air samples were collected over activated charcoal, More
    Among chemical industries, petroleum depots have been identified as large emitters of Volatile Organic Compounds (VOCs).They affect air quality and constitute serious health and environmental problems on the ecosystem. Air samples were collected over activated charcoal, using a low volume air sampler. The sampler was placed at a human breathing height of 1.5 m for a sampling period of 8 hours at seven different sampling locations as follows; Workshop area, Slop Tanks area, Gate 1, Tank Farm area, Gate 2, Otiyelu Village and Marketer’s Block. Desorption process was performed on the adsorbed activated charcoal using a solvent extraction method. The extracted solutions were subjected to Flame Ionization Detection analysis in a Gas Chromatograph using a capillary column HP 5MS with length, inner diameter and particle size set at (30 m × 0.25 mm × 0.25 μm). The Gas Chromatograph was powered with ChemStation RevA09.01 software to determine the concentrations of each of the VOCs species present. The sampling collection and quantitative analysis described above is consistent with ANSI/ASTM D-1605-60 procedure. The identified VOCs species emitted were characterized by toluene (52.84%), benzene (37.61%), xylene (5.67%), and ethyl benzene (3.88%). The observed concentrations uncovered the air tolerance limits set by United States Environmental Protection Agency and the Agency for Toxic Substances and Diseases Registry. Manuscript profile

  • Article

    2 - Ozone Formation Potential and Toxicity Potential of VOCs emissions from a Nigerian petroleum products depot
    Anthropogenic Pollution , Issue 1 , Year , Spring 2020
    Abstract: Emissions of volatile organic compounds (VOCs) are major causes of tropospheric ozone and aerosol pollutions. This research provided information on ozone formation potential (OFP) and toxicity potential (TP) resulting from VOCs emission from a Nigeria petroleu More
    Abstract: Emissions of volatile organic compounds (VOCs) are major causes of tropospheric ozone and aerosol pollutions. This research provided information on ozone formation potential (OFP) and toxicity potential (TP) resulting from VOCs emission from a Nigeria petroleum depot. In this work, speciated VOCs were provided on basis of updated emissions within and around the depot. The observed concentration of individual VOCs and maximum incremental reactivity (MIR) coefficient were applied to assess the OFP of individual VOC in the ambient atmosphere. Major aromatic VOCs species were considered at various locations. The total OFP in the atmosphere of the depot is 1522.42 μg O3/m3. Toluene specie was revealed to be major contributor to OFP with 71.47% while others species were in descending order of benzene (9.16%), m-xylene (8.41%), ethyl benzene (3.98%), p-xylene (3.51%) and o-xylene (3.46%). The TP levels of aerosols pollutions were also reported with respect to locations. The Slop tank area had the highest OFP and TP level. An assessment of TP level and OFP suggests that occupants of some location within the depot are exposed to unhealthy air conditions. The study established that OFP and TP have a relationship within the atmosphere of the depot with respect to location. It is recommended that aggressive controlled measures of VOCs sources should be adopted within the petroleum depot as a way of curtailing the impact of tropospheric ozone and aerosol pollutions. Manuscript profile

  • Article

    3 - Application of Steam Enhanced Extraction method on BTEX contaminated soil in a Nigerian petroleum depot and Automobile workshop sites in Ilorin metropolis, Nigeria.
    Anthropogenic Pollution , Issue 1 , Year , Spring 2021
    . Benzene, toluene, ethyl benzene and xylene (BTEX) are major causes of contaminated soil. This is due to fuel leakages or spillages, various forms hydrocarbon burning/combustion and land disposal petroleum base oil.Contaminated soil samples were excavated from two diff More
    . Benzene, toluene, ethyl benzene and xylene (BTEX) are major causes of contaminated soil. This is due to fuel leakages or spillages, various forms hydrocarbon burning/combustion and land disposal petroleum base oil.Contaminated soil samples were excavated from two different locations within Ilorin metropolis; pipelines and products marketing company, a Nigerian petroleum depot, Ilorin depot and auto mechanic workshop of over ten years. Steam enhanced extraction method was employed through injection of steam to contaminated soil from steam generator into soil pot where contaminated soil was placed. After the remediation process the steam soil samples were taken to the laboratory where the sonication extraction technique was used to extract the contaminants (BTEX) from the steamed soil samples of 30, 60 and 90 minutes respectively. The extract from the steamed soil samples of 30, 60 and 90 minutes were subjected Gas Chromatography fitted with flame ionization detector analysis to determine the exact amount of BTEX removed after remediation process.Pre-treated soil sample of auto mechanics workshop was found to be 4.5004 x 10-1 mg/kg and post-treated soil samples were found to be 1.8164 x10-1 mg/kg, 8.7519 x10-1 mg/kg and 5.7006 x10-2 mg/kg for 30, 60 and 90 minutes respectively after remediation process while Pre-treated soil sample of a Nigerian petroleum depot was found to be 6.6049 x 10-1 mg/kg and post-treated soil samples were found to be 2.9320 x10-1 mg/kg, 1.9855 x10-1 mg/kg and 1.0237 x10-1 mg/kg for 30, 60 and 90 minutes respectively after remediation process Manuscript profile