List of Articles Richa Vohra


  • Article

    1 - Mathematical Modeling for Thermoelastic Double Porous Micro-Beam Resonators
    Journal of Solid Mechanics , Issue 2 , Year , Spring 2018
    In the present work, the mathematical model of a homogeneous, isotropic thermoelastic double porous micro-beam, based on the Euler-Bernoulli theory is developed in the context of Lord-Shulman [1] theory of thermoelasticity. Laplace transform technique has been used to o More
    In the present work, the mathematical model of a homogeneous, isotropic thermoelastic double porous micro-beam, based on the Euler-Bernoulli theory is developed in the context of Lord-Shulman [1] theory of thermoelasticity. Laplace transform technique has been used to obtain the expressions for lateral deflection, axial stress, axial displacement, volume fraction field and temperature distribution. A numerical inversion technique has been applied to recover the resulting quantities in the physical domain. Variations of axial displacement, axial stress, lateral deflection, volume fraction field and temperature distribution with axial distance are depicted graphically to show the effects of porosity and thermal relaxation time. Some particular cases are also deduced. Manuscript profile

  • Article

    2 - Variational Principle and Plane Wave Propagation in Thermoelastic Medium with Double Porosity Under Lord-Shulman Theory
    Journal of Solid Mechanics , Issue 2 , Year , Spring 2017
    The present study is concerned with the variational principle and plane wave propagation in double porous thermoelastic infinite medium. Lord-Shulman theory [2] of thermoelasticity with one relaxation time has been used to investigate the problem. It is found that for t More
    The present study is concerned with the variational principle and plane wave propagation in double porous thermoelastic infinite medium. Lord-Shulman theory [2] of thermoelasticity with one relaxation time has been used to investigate the problem. It is found that for two dimensional model, there exists four coupled longitudinal waves namely longitudinal wave (P), longitudinal thermal wave (T), longitudinal volume fractional wave corresponding to pores (PV1), and longitudinal volume fractional wave corresponding to fissures (PV2), in addition to, a transverse wave (S) which is not affected by the volume fraction fields and thermal properties. The different characteristics of the wave such as phase velocity and attenuation quality factor are computed numerically and depicted graphically. Some special cases are also deduced from the present investigation. Manuscript profile