Designing a Two-Phase BLDC Motor and Finite-Element Analysis of Designing a Controller in Order to Manoeuvre High-Speed Boats in Marine Turbulences
Subject Areas : Renewable energyMehrdad Jafarboland 1 , Ehsan Vehedi 2 , Ghazanfar Shahgholian 3
1 - Associate Professor /Maleke Ashtar University – Esfahan
2 - Control and Instrumentation Engineer, Tabas Parvadeh Coal Company, Iran
3 - Assistant Professor /Islamic Azad University, Najafabad Branch
Keywords: Speed boats (HSB), PID and fuzzy controller, manoeuvre, marine turbulences,
Abstract :
High speed boats are small kind of boats which are piloted with boatman.These boats are usually used in strategic commissions like military which fast speeds and good manoeuvrability are of essential importance.Rough sea path, marine turbulences and multi input multi output nonlinear dynamical model of this boats,make it very difficult to pilot and manoeuvre them.in this paper,.two controller are designed and proposed for pursuing desired path and manoeuvring fast speeds.Fuzzy controller is compared with the result of PID controller. Simulation results also indicate that these proposed controllers have suitable responses and can pilot the boat in the best manner.
[1] D. Towill, R. Sutton, “An introduction to the use of fuzzy setsin the implementation of controlalgorithms”, Jou. of the Ins. of Elec. and Radio Eng., Vol. 55. No. 10, pp. 357-367, Oct. 1985.
[2] O. Ohichi, “Feedback-error-learning neural network for the automatic maneuvering system of a ship”, IEEE/ICNN, pp. 225-230, 1995.
[3] F. Velascol, E. Revestidol, E. Lopez, E. Moyan, “Obtaining ship trajectories of an autonomous inscale fast-ferry by identifying a heading model”, IEEE/ISISP, pp. 1-6, Alcalade Henares, Oct. 2007
[4] M. Junaid, M. Usman, A. Jafri, “A neural network based adaptive autopilot formarine applications”, IEEE/ICCIS, pp. 1-6, Bangkok, June 2006.
[5] P. Lee, S. Hong, Y. Lim, “Self-tuning control of autonomous underwater vehiclees based on discrete variabel structure system”, IEEE/OCEANS, Vol. 2, pp. 902-909, Oct. 1997.
[6] L. Nguyen, M. Duc, S.Hiep, “A new andeffective fuzzy PID autopilot for ships”, IEEE/CIRA, Vol. 3, pp. 1411-1415, July 2003.
[7] R. Zhang, Y. Chen, Z. Sun, “Path control of a surface ship in restricted watersusing sliding mode”, IEEE Trans on Con. Sys. Tec., Vol. 8, No. 4, pp. 722-732, 2000.
[8] H. Zhang, J. Zhao, T. Gen, Z. Cong, “Fuzzy controller and rules optimization used for the surface maneuver control of submarinein calm sea area”, IEEE/CCDC, Guilin, pp. 5453_5458, 2009.
[9] J. Walchko, D. Novick, C. Nechyba, “Development of a sliding mode control system with extendedkalman filter estimation for subjugator”, Con. on Recent Advances in Robotics, Florida, 2003.
[10] L. Logan, “A comparison between H-infinityMu-synthesis control and sliding-mode control for robust control of a-smallautonomous underwater vehicle”, IEEE/ SAUVT, pp. 399_416, 1994.
[11] C. Jianxin, G. Wei, C. Xiaoya, “Study on adaptive control of thepropelling and turning manoeuvre of an autonomouswater vehicle for ocean observation”, IEEE/OCEANS, China, 2008.
[12] J. Aiping, L. Xiu-ying, H. Zhi-gang, “PID to model-freecontroller”, ControlEngineering of China ,2005.
_||_