Effect of Coating Process Parameters on Corrosion Behavior of Ti-6Al-4V
Subject Areas :Mohammad Hossein Majidi 1 , Amin Rabiezadeh 2 , Ahmad Afsari 3
1 - Department of Mechanical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
2 - Department of Materials Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
3 - Department of Mechanical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
Keywords:
Abstract :
[1] Liu, Z. J., Zhong, X., Liu, H., Tsai, I. L., Donatus, U. and Thompson, G. E. 2015. Characterization of anodic oxide film growth on Ti6Al4V in NaTESi electrolyte with associated adhesive bonding behaviour. Electrochimica Acta. 182: 482-492.
[2] He, D., Zheng, S., Pu, J., Zhang, G. and Hu, L. 2015. Improving tribological properties of titanium alloys by combining laser surface texturing and diamond-like carbon film. Tribology International. 82: 20-27.
[3] Frauchiger, V. M., Schlottig, F., Gasser, B. and Textor, M. 2004. Anodic plasma-chemical treatment of CP titanium surfaces for biomedical applications. Biomaterials. 25(4): 593-606.
[4] Jiang, P., He, X. L., Li, X. X., Yu, L. G. and Wang, H. M. 2000. Wear resistance of a laser surface alloyed Ti–6Al–4V alloy. Surface and Coatings Technology. 130(1): 24-28.
[5] Okazaki, Y. and Gotoh, E. 2005. Comparison of metal release from various metallic biomaterials in vitro. Biomaterials. 26(1): 11-21.
[6] Vadiraj, A. and Kamaraj, M. 2006. Characterization of fretting fatigue damage of PVD TiN coated biomedical titanium alloys. Surface and Coatings Technology. 200(14-15): 4538-4542.
[7] Dobrzański, L. A. and Mikuła, J. 2005. The structure and functional properties of PVD and CVD coated Al2O3+ZrO2 oxide tool ceramics. Journal of Materials Processing Technology. 167(2-3): 438-446.
[8] Mkaddem, A., Ben Soussia, A. and El Mansori, M. 2013. Wear resistance of CVD and PVD multilayer coatings when dry cutting fiber reinforced polymers (FRP). Wear. 302(1-2): 946-954.
[9] Matykina, E., Arrabal, R., Mingo, B., Mohedano, M., Pardo, A. and Merino, M. C. 2016. In vitro corrosion performance of PEO coated Ti and Ti6Al4V used for dental and orthopaedic implants. Surface and Coatings Technology. 307: 1255-1264.
[10] Razavi, R. S., Salehi, M., Ramazani, M. and Man, H. C. 2009. Corrosion behaviour of laser gas nitrided Ti–6Al–4V in HCl solution. Corrosion Science. 51(10): 2324-2329.
[11] Sun, F., Liu, J., Yang, Y. and Yu, H. 2005. Nitridation of iron by CW-CO2 laser nitriding technologies. Materials Science and Engineering: B. 122(1): 29-33.
[12] Narayanan, R. and Seshadri, S. K. 2007. Phosphoric acid anodization of Ti–6Al–4V – Structural and corrosion aspects. Corrosion Science. 49(2): 542-558.
[13] Mizukoshi, Y., Okajima, T. and Masahashi, N. 2015. Local structure of vanadium in Ti-6Al-4V alloy anodized in acetic acid aqueous solution and its contribution to visible light response in photocatalysis. Applied Catalysis B: Environmental. 162: 180-186.
[14] Diamanti, M. V., Sebastiani, M., Mangione, V., Del Curto, B., Pedeferri, M. P., Bemporad, E., Cigada, A. and Carassiti, F. 2013. Multi-step anodizing on Ti6Al4V components to improve tribomechanical performances. Surface and Coatings Technology. 227: 19-27.
[15] Stoch, A., Jastrze¸bski, W., Długoń, E., Lejda, W., Trybalska, B., Stoch, G. J. and Adamczyk, A. 2005. Sol–gel derived hydroxyapatite coatings on titanium and its alloy Ti6Al4V. Journal of Molecular Structure. 744-747: 633-640.
[16] Wu, C., Ramaswamy, Y., Gale, D., Yang, W., Xiao, K., Zhang, L., Yin, Y. and Zreiqat, H. 2008. Novel sphene coatings on Ti-6Al-4V for orthopedic implants using sol-gel method. Acta biomaterialia. 4(3): 569-76.
[17] Qi, G., Zhang, S., Khor, K. A., Weng, W., Zeng, X. and Liu, C. 2008. An interfacial study of sol–gel-derived magnesium apatite coatings on Ti6Al4V substrates. Thin Solid Films. 516(16): 5172-5175.
[18] Abrishamchian, A., Hooshmand, T., Mohammadi, M. and Najafi, F. 2013. Preparation and characterization of multi-walled carbon nanotube/hydroxyapatite nanocomposite film dip coated on Ti-6Al-4V by sol-gel method for biomedical applications: an in vitro study. Materials science & engineering. C, Materials for biological applications. 33(4): 2002-10.
[19] Snizhko, L. O., Yerokhin, A. L., Pilkington, A., Gurevina, N. L., Misnyankin, D. O., Leyland, A. and Matthews, A. 2004. Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions. Electrochimica Acta. 49(13): 2085-2095.
[20] Stojadinovic, S., Vasilic, R., Belca, I., Petkovic, M., Kasalica, B., Nedic, Z. and Zekovic, L. 2010. Characterization of the plasma electrolytic oxidation of aluminium in sodium tungstate. Corrosion Science. 52(10): 3258-3265.
[21] Sarbishei, S., Faghihi Sani, M. A. and Mohammadi, M. R. 2014. Study plasma electrolytic oxidation process and characterization of coatings formed in an alumina nanoparticle suspension. Vacuum. 108: 12-19.
[22] Aliasghari, S., Skeldon, P. and Thompson, G. E. 2014. Plasma electrolytic oxidation of titanium in a phosphate/silicate electrolyte and tribological performance of the coatings. Applied Surface Science. 316: 463-476.
[23] Nakajima, M., Miura, Y., Fushimi, K. and Habazaki, H. 2009. Spark anodizing behaviour of titanium and its alloys in alkaline aluminate electrolyte. Corrosion Science. 51(7): 1534-1539.
[24] Liu, X., Chu, P. and Ding, C. 2004. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering: R: Reports. 47(3-4): 49-121.
[25] Yerokhin, A. L., Nie, X., Leyland, A., Matthews, A. and Dowey, S. J. 1999. Plasma electrolysis for surface engineering. Surface and Coatings Technology. 122(2): 73-93.