Effect of Shock Factors Affecting Financial Crises in Iran's Economy: Autoregressive Vector Models Variable-Time Parameters
Subject Areas : Labor and Demographic Economicsozra bayani 1 , teimur mohammadi 2 , javid bahrami 3 , Hossein Tavakolian 4
1 - Allameh Tabataba'i University
2 - Department of Economics, Allame Tabatabai University
3 - Department of Economics, AllamehTabataba'i University, Tehran, Iran
4 - Assistant professor, Faculty of economics, Allameh Tabataba'i university
Keywords: G28, financial crisis, E58, JEL classification: G01, F33. Key Words: Autoregressive Vector Models Variable-Time Parameters, Bayesian Model Averaging,
Abstract :
The purpose of this study was to investigate the effects of shocks on factors affecting financial crises in Iran's economy. In this study 62 explanatory variables were introduced into the model between 1370: 1 and 1395: 4 and, using the Bayesian averaging model approach, 12 non-critical variables that were effective on the financial crisis were identified. According to the results of the results, it can be stated that the financial crisis index in Iran's economy is a multi-dimensional problem, as variables related to fiscal policy; monetary policy and foreign exchange policy affect this index. Based on the results of the Autoregressive Vector Models Variable-Time Parameters, it was also observed that the effect of selected variables on financial crises in Iran over the course of time has had different effects and in recent years the intensity of the effect of selected variables has been strengthened. One of the fundamental solutions is that policies that reduce inflation uncertainty, such as the fiscal and monetary discipline of the government and the central bank, reduce crisis expectations by stabilizing the currency and currency markets can reduce crisis uncertainty.
منابع
- ابراهیمی، ایلناز، توکلیان، حسین (1391). طراحی یک سامانه هشداردهی زودهنگام بحرانهای ارزی در ایران با استفاده از رویکرد مارکوف سوئیچینگ. بیست و دومین کنفرانس سیاستهای پولی و ارزی پژوهشکده پولی و بانکی.
- اکبری، جابر، بختیاری، صادق، سامتی، مرتضی، رنجبر، همایون (1395). بررسی اثر تکانههای پولی بر رابطه درآمد ـ مخارج دولت ایران با رویکرد TVP-FAVAR. فصلنامه مدلسازی اقتصادی، 10(36): 73-53.
- کمیجانی، اکبر، زارعی، ژاله (1391). ارزیابی ثبات مالی در ایران با تأکید بر ثبات بانکی (رویکرد آزمون هشدارهای اولیه). فصلنامه اقتصاد کاربردی، 3 (10): 152-127.
- صیادنیا طیبی، عزتالله، ارشدی، علی، صمدی، سعید، شجری، هوشنگ (1389). تبیین یک سیستم هشداردهنده جهت شناسایی بحرانهای مالی در ایران. فصلنامهپولو اقتصاد، 2(6): 211-169.
- قوام، محمد حسین، عبادی، جعفر، محمدی، شاپور (1394). طراحی مدل هیبریدی هشداردهنده پیش از موعد بحران مالی برای اقتصاد ایران. فصلنامه مطالعات اقتصادی کاربردی ایران، 4 (13): 86-35.
- مشیری، سعید، نادعلی، محمد (1392). شناسایی عوامل مؤثر در بروز بحران بانکی در اقتصاد ایران. فصلنامه پژوهشنامه اقتصادی، 13 (48): 27-1.
- نصراللهی، محمد، یاوری، کاظم، نجارزاده، رضا، مهرگان، نادر (1395). طراحی یک سیستم هشدار زودهنگام بحرانهای ارزی در ایران: رویکرد رگرسیون لجستیک. مجله تحقیقات اقتصادی، 52(1): 214-187.
- Abiad, A. (2003). Early warning systems: A survey and a regime switching approach. IMF working paper, wp/03/32.
- Babecký, J., Havránek, T., Matějů, J., Rusnák, M., Šmídová, K., & Vašíček, B. (2012). Leading indicators of crisis incidence: Evidence from developed countries. Czech National Bank, mimeo.
- Bai, J., & Perron, P. (2003). Computation and analysis of multiple structural changes models. Journal of Applied Econometrics, 1(18): 1-22.
- Bernanke, B., Boivi, J., & Eliasz, P. (2005). Measuring the effects of monetary policy: A factor-augmented vector autoregressive (FAVAR) Approach. Quarterly Journal of Economics, 120(1): 387-422.
- Bussière, M. (2007). Balance of payment crises in emerging markets– how early were the early warning signals?. European Central Bank Working Paper, No 713.
- Cerovic, S., Gerling, K., Hodge, A., & Medas, P. (2018).Predictingfiscal crises. IMF Working Paper, WP/18/181.
- Claessens, S., Kose, M. A., & Terrones, M. (2009). What happens during recessions, crunches and busts?. Economic Policy, 60: 653-700.
- .(2012). How do business and financial cycles interact? Journal of International Economics, 87: 178-90.
- Del Negro, M., & Otrok, C. (2008). Dynamic factor models with time-varying parameters: Measuring changes in international business cycles. University of Missouri Manuscript.
- Eickmeier, S., Lemke, W., & Marcellino, M. (2011). The changing international transmission of financial shocks: Evidence from a classical time-varying FAVAR. Deutsche Bundesbank, iscussion Paper Series 1: Economic Studies, No 05/2011.
- Frankel, J. A., & Saravelos, G. (2012). Can leading indicators assess country vulnerability? Evidence from the 2008–09 global financial Crises. Journal of International Economics, 87(2): 216–231.
- Hosni, K. (2014). Early warning indicators for systemic banking crises. Journal of Business Studies Quarterly, 5(4): 244-222.
- Korobilis, D. (2013). Assessing the transmission of monetary policy shocks using time-varying parameter dynamic factor models. Oxford Bulletin of Economics and Statistics, 75: 157-179.
- Kannan, P. (2009). On the welfare benefits of an international currency. European Economic Review, 53(5): 588-606.
- Mishkin, F. S., & Savastano, Miguel A. (2000). Monetary policy strategies for Latin America. National bureau of economic research. Working Paper, No. 7617.
- O’ Brien, J. (2003). Wall Street on trial: A corrupted state? Chichester. UK, John Wiley & Sons.
- Rose, A. K., & Spiegel, M.M. (2011). Cross-country causes and consequences of the 2008 crisis: An update. European Economic Review, 55(3): 309–324.
- Shiller, R. & Okun, A. M. (2009). How Animal Spirits Destabilize Economies: Textbook Economics Teaches Capitalism Is Essentially Stable and Has Little Need for Government Interference. From www.mckinseyquarterly.com/article_print.
- Stock, J.m & Watson, M. (2008). Phillips curve inflation forecasts. NBER Working Paper, No. 14322.
- Yeoh, P. (2010). Causes of the global financial crisis: Learning from the competing insights. International journal of disclosure and governance, 7(1): 142-69.
_||_