Time-varying Effects of Inflation Determinants: State-space Models
Subject Areas : Labor and Demographic Economicsm. khezri 1 , B. Sahabi 2 , K. Yavari 3 , H. Heidari 4
1 - دانشجوی دکتری اقتصاد دانشگاه تربیت مدرس
2 - استادیار اقتصاد دانشگاه تربیت مدرس
3 - دانشیار اقتصاد دانشگاه تربیت مدرس
4 - استادیار اقتصاد دانشگاه تربیت مدرس
Keywords: Inflation, E37, C11, JEL Classification: C53, E31 Keywords: Auto-regerssion, State- space Models,
Abstract :
Abstract Based on the importance of inflation in Iran economy, paying careful attention to inflation determinants is essential. According to the results of various studies, the evaluation of inflaion determinants by using standard VAR model leads to wrong conclusions due to omitted variables bias in VAR model. The problem of price puzzle in the empirical literature is an example. In this study, for a more accurate assessment of the determinants of inflation in Iran economy and forecasting the inflation, TVP-VAR models are used to model the inflation instead of VAR model with constant coefficients. So that the variables of GDP, growth of monetary basis, inflation, exchange rates,banks interest rates and inflation uncertainty are modeled. The results represent changeable relationships between variables over time and the impact of economic conditions on the effects of variables on each other.
منابع
- ابراهیمی، محسن، سوری، علی (۱۳۸۵). رابطه بین تورم و نا اطمینانی تورم در ایران. دانش و توسعه. (18): 111-128.
- توکلیان، حسین (1391). بررسی منحنی فیلیپس کینزی جدید در قالب یک مدل تعادل عمومی پویای تصادفی برای ایران. مجله تحقیقات اقتصادی، 47(3): 1 - 22.
- حسینی، صفدر، قلی زاده، حیدر (1389). بررسی تورم و بیکاری در اقتصاد ایران. فصلنامه پژوهشهای اقتصادی ایران. 14(43).
- حسینی نسب، ابراهیم و مهدیه رضا قلی زاده، (1389). بررسی ریشه های مالی تورم در ایران. فصلنامه پژوهشهای اقتصادی، 10(1): 43-70.
- دادگر، یداله، کشاورز حداد، غلامرضا، تیاترج، علی (1385). تبیین رابطه تورم و رشد اقتصادی در ایران. جستارهای اقتصادی. (5): 88.
- درگاهی، حسن، رؤیا، شربت اوغلی، زمستان (1389). تعیین قاعده سیاست پولی در شرایط تورم پایدار اقتصاد ایران با استفاده از روش کنترل بهینه. مجله تحقیقات اقتصادی، 45 (93): 1- 27.
- دورونبوش، رودیگر، استانلی، فیشر، اقتصاد کلان، مترجم: محمد حسین تیزهوش تابان، انتشارات سروش، تهران، 1371.
- سحابی، بهرام، سلیمانی، سیروس، خضری، سمیه، خضری، محسن (1392). اثرات رشد نقدینگی بر تورم در اقتصاد ایران: مدل های تغییر رژیم. راهبرد اقتصادی،2(4):121-146.
- شهاب، محمد رضا (1386). نرخهای ارز و تورم :یک تحلیل تجربی درباره ایران، پایان نامه کارشناسی ارشد، دانشکده علوم انسانی، گروه علوم اقتصادی.
- صمیمی جعفری، احمد، قلی زادی کناری، صدیقه (1386). بررسی رابطه تورم و رشد اقتصادی در کشورهای در حال توسعه. مجله نامه اقتصادی،63 (2): 45-58.
- کمیجانی اکبر، یزدان نقدی (1388). بررسی ارتباط متقابل بین تولید و تورم در اقتصاد ایران (با تأکید بر تولید بخشی)، پژوهشنامه علوم اقتصادی، 9(1).
- کمیجانی، اکبر، حسین توکلیان (1390). بررسی عدم تقارن در رفتار سیاست گذاری پولی بانک مرکزی (مورد ایران). مجله تحقیقات مدلسازی اقتصادی، (6).
- گرجی، ابراهیم، فولادی، مهدی (1388). مقایسه تطبیقی منحنی فیلیپس کینزینهای جدید با منحنیهای فیلیپس متعارف برای اقتصاد ایران. تحقیقات اقتصادی. 87: 208.
- گرجی، ابراهیم، اقبالی، علیرضا (1388). برآورد منحنی فیلیپس بارویکردی به انتظارات تطبیقی و عقلایی، تحقیقات اقتصادی، (80): 143.
- موسوی محسنی، رضا، سعیدی فر، مریم (۱۳۸۵). منحنی فیلیپس و تأثیرگذاری سیاست پولی در اقتصاد ایران. تحقیقات اقتصادی. (72): ۳۰۳.
- Ang, A. Bekaert, G., & Wei, M. (2007). Do Macro Variables, Asset Markets, or Surveys Forecast Inflation Better? Journal of Monetary Economics, 54:1163-1212.
- Avramov, D. (2002). Stock Return Predictability and Model Uncertainty. Journal of Financial Economics, 64: 423-458.
- Bagliano, F.C., Favero. C.A. (1998). Measuring Monetary Policy with VAR Models: An evaluation. European Economic Review, 42: 1069-1112.
- Bernanke, B., Boivin, J., & P. Eliasz. (2005). Measuring the Effects of Monetary Policy: A Factor-augmented Vector Autoregressive (FAVAR) Approach. Quarterly Journal of Economics, 120 (1): 387-422.
- Bernanke, B.S., Mihov, I. (1998). Measuring Monetary Policy. The Quarterly Journal of Economics, 113 (3): 869-902.
- Boivin, J., Ng, S. (2006). Are More Data Always Better For Factor Analysis? Journal of Econometrics, 132: 169-194.
- Cogley, T., & Sargent, T. (2005). Drifts and Volatilities: Monetary Policies and Outcomes in the post WWII U. S., Review of Economic Dynamics, 8: 262-302.
- Cogley, T., & Morozov, S., & Sargent, T. (2005). Bayesian Fan Charts for U. K. in. ation: Forecasting and Sources of Uncertainty in an Evolving Monetary System,. Journal of Economic Dynamics and Control, 29: 1893-1925.
- Dave, C., & S. Dressler. (2009). The Bank Lending Channel: A FAVAR Analysis”, Villanova school of business economics working paper, No.4
- Del Negro, M., Otrok, C. (2008). Dynamic Factor Models with Time-Varying Parameters: Measuring changes in international business cycles. University of Missouri Manuscript.
- Doz, C., Giannone, D., Reichlin, L. (2011). A Two-Step Estimator for Large Approximate Dynamic Factor Models Based On Kalman Filtering. Journal of Econometrics, 164: 188-205.
- Eickmeier, S., Lemke, W., Marcellino, M. (2011). The Changing International Transmission of Financial Shocks: Evidence from a Classical Time-Varying FAVAR. Deutsche Bundesbank, iscussion Paper Series 1: Economic Studies, No 05/2011.
- Edward, N., Gambera,D., R. Hakesb. (2005). Is Monetary Policy Important For Forecasting Real Growth And Inflation? Journal of Policy Modeling, 27: 177–187.
- Friedman, M. (1977). Nobel lecture: inflation and unemployment. Journal of Political Economy, 85: 451–472.
- Fruhwirth-Schnatter, S. (2006). Finite Mixture and Markov Switching Models (New York: Springer
- Garratta, A., Mitchellb, J. (2011). Shaun, P., Real-time inflation forecast densitiesfrom ensemble Phillips curves. North American Journal of Economics and Finance, 22: 78-88.
- Geweke, J., & Amisano, G. (2010). Hierarchical Markov Normal Mixture Models with Appli-cations to Financial Asset Returns,. Journal of Applied Econometrics forthcoming.
- Groen, J., Paap, R., & Ravazzolo, F.(2009). Real-time In. Ation Forecasting in a Changing World,. Econometric Institute Report, 2009-19, Erasmus University Rotterdam,
- Hamilton, J. (1989) A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle, Econometrica, 57:357-384. 30
- Hamilton, J. D. (1983). Oil and the Macroeconomy since World War II. Journal of Political Economy, 91: 228–248.
- Hamilton, J. D. (1996). Specification testing in Markov-switching time series models. Journal of Econometrics 70, 127–157.
- Hamilton, J. D., Susmel, R. (1994). Autoregressive conditional heteroscedasticity and changes in regime. Journal of Econometrics, 64, 307–333.
- Henry, O. (2009). Regime switching in the relationship between equity returns and short-term interest rates. Journal of Banking and Finance 33, 405–414.
- Hoogerheide, L)2009(., Kleijn, R., Ravazzolo, F., van Dijk, H. and Verbeek, M.,. Forecast Ac-curacy and Economic Gains from BayesianModel Averaging using Time-VaryingWeights,. Tinbergen Institute Discussion Paper 2009-061/4,
- Holland, S., 1995. Inflation and uncertainty: tests for temporal ordering. Journal of Money, Credit, and Banking 27, 827–837.
- Hornstein, A. (2008). Introduction to the New Keynesian Phillips Curve. EconomicQuarterly, 94 (4). pp 301-309.
- Hwang, Y. (2007). Causality between inflation and real growth. Economics Letters 94,146–153.
- Jouchi Nakajima,J., Munehisa, K., Toshiaki, W. (2009). Bayesian analysis of time-varying parameter vector autoregressive model for the Japanese economy and monetary policy. Journal of the Japanese and International Economies, 25(3):225-245.
- Kalman, R. (1960). A new Approach to linear Filtering and prediction problems, Journal of Basic Engineering, 82 (Series D). PP. 35-45.
- Karunaratne, N.D., Bhar, R. (2011). Regime-shifts and post-float inflation dynamics of Australia. Economic Modelling, 28, 1941–1949.
- Kim, C. J., Nelson, C. R. (1999). Friedman’s plucking model of business fluctuations: tests and estimates of permanent and transitory components. Journal of Money, Credit and Banking 31, 317–334.
- King, R. G. (2008). The Phillips Curve and U. S. Macroeconomic Policy: Snapshots, 1958-1996. Economic Quarterly, 94 (4). pp 311-359.
- Koop, G., Potter, S. (2004). Forecasting in dynamic factor models using Bayesian model averaging. The Econometrics Journal, 7, 550–565.
- Koop, G., Korobilis, D. (2011). Forecasting Inflation using Dynamic Model Averaging. Manuscript available at http: //personal. strath. ac. uk/gary. koop.
- Koop, G. and Korobilis, D. (2013). A New Index of Financial Conditions. European Economic Review, 71, pp. 101-116.
- Koop, G., Leon-Gonzalez, R. (2009). Strachan, R.,. On the Evolution of the Monetary Policy Transmission Mechanism,. Journal of Economic Dynamics and Control 33, 997-1017.
- Koop, G. and Potter, S. (2004). Forecasting in Dynamic Factor Models using Bayesian Model Averaging,. The Econometrics Journal, 7: 550-565.
- Korobilis, D. (2009)Assessing the Transmission of Monetary Policy Shocks using Dynamic Factor Models, Discussion Paper 9-14, University of Strathclyde.
- Korobilis, D. (2013). Assessing the transmission of monetary policy shocks using time-varying parameter dynamic factor models. Oxford Bulletin of Economics and Statistics 75, 157-179.
- Kydland, F. E., and E. C. Prescott. (1977). Rules Rather than Discretion: TheInconsistency of Optimal Plans. Journal of Political Economy, 85 (3). pp 473-91.
- Lucas, R. E. Jr. (1976) «Econometric Policy Evaluation: A Critique, in K. Brunner and A. H. Meltzer (Eds). the Phillips Curve and Labor Markets», Supplement to the Journal of Monetary Economics.
- Moser, S., Rumler, F. (2007). Forecasting Austrian inflation. Economic Modeling 24 470–480.
- Mumtaz, H. (2010). Volving UK Macroeconomic Dynamics: A Timevarying Factor Augmented VAR. Bank of England, Working Paper, No. 386 March
- Nakajima, J., Munehisa, Kasuya. (2011). Toshiaki, W., Bayesian analysis of time-varying parameter vector autoregressive model for the Japanese economy and monetary policy. Journal of the Japanese and International Economies. (Srticle at Press).
- Nelson, D. B. (1991). Conditional Heteroscedasticity in Asset Returns: A new approach. Econometrica 59, 347–370.
- Pesaran, M. H., Timmermann, A. (2000). A Recursive Modeling Approach to Predicting UK Stock Returns,. The Economic Journal, 110: 159-191.
- Primiceri. G. (2005). Time Varying Structural Vector Auto regressions and Monetary Policy, Review of Economic Studies, 72: 821-852.
- Raftery, A., Karny, M. and Ettler, P. (2010). Online Prediction Under Model Uncertainty Via Dynamic Model Averaging: Application to a Cold Rolling Mill,. Technimetrics, 52: 52-66.
- Senbet, D. (2008). Measuring the Impact and International Transmission of Monetary Policy: A Factor-augmented Vector Autoregressive (FAVAR) Approach European Journal of Economics, Finance and Administrative Sciences, Issue 13.
- Sims.C.A.(1980).Macroeconomics and Reality. Econometrica, 48: 1-48.
- Sims, C. (1992). Interpreting the Macroeconomic Time Series Facts: The Effects of Monetary Policy. European Economic Review. 975-1000.
- Stock, J. and Watson, M.,. (1996) Evidence on Structural Instability in Macroeconomic Time Series Relations. Journal of Business and Economic Statistics, 14: 11-30.
- Stock, J. and Watson, M. (1999). Forecasting Inflation,. Journal of Monetary Economics, 44: 293-335.
- Stock, J. and Watson, M. (2007). Why Has U. S. Inflation Become Harder to Forecast? Journal of Monetary Credit and Banking, 39: 3-33.
- Stock, J. and Watson, M.,. Phillips Curve Inflation Forecasts,. NBER Working Paper No. 14322, 2008.