Investigation of Parameters Effect on the Size and Morphology of Copper Nanoparticles using Various Reducing Agents
Subject Areas : Journal of NanoanalysisMaryam Mohammadpour 1 , Samad Sabbaghi 2 , Zahra Manafi 3
1 - Faculty of advanced technologies, Nano-chemical Eng. Department, Shiraz University, Shiraz, Iran
2 - Faculty of advanced technologies, Nano-chemical Eng. Department, Shiraz University, Shiraz, Iran
3 - Research and Development Centre, Sarcheshmeh Copper Complex, National Iranian Copper Industries Company, Iran
Keywords:
Abstract :
[1] M Sahooli, S Sabbaghi, R Saboori. (2012). Synthesis and characterization of mono sized CuO nanoparticles. Materials Letters, 81,169-172.
https://doi.org/10.1016/j.matlet.2012.04.148
[2] Zhou, R., Wu, X., Hao, X., Zhou, F., Li, H., & Rao, W. (2008). Influences of surfactants on the preparation of copper nanoparticles by electron beam irradiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266(4), 599-603.
https://doi.org/10.1016/j.nimb.2007.11.040
[3] Lisiecki, I., & Pileni, M. P. (1993). Synthesis of copper metallic clusters using reverse micelles as microreactors. Journal of the American Chemical Society, 115(10), 3887-3896.
https://doi.org/10.1021/ja00063a006
[4] Wu, S. H., & Chen, D. H. (2004). Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. Journal of Colloid and Interface Science, 273(1), 165-169.
https://doi.org/10.1016/j.jcis.2004.01.071
[5] Reverberi, A. P., Salerno, M., Lauciello, S., & Fabiano, B. (2016). Synthesis of Copper Nanoparticles in Ethylene Glycol by Chemical Reduction with Vanadium (+2) Salts. Materials, 9(10), 809.
https://doi.org/10.3390/ma9100809
[6] Begletsova, Nadejda, A. Shinkarenko, Oksana, I. Selifonova, Ekaterina, Tsvetkova, Olga and M. Zakharevich, Andrey, K. Chernova, Rimma, A. Kletsov, Aleksey, Glukhovskoy, Evgeny.(2017). Synthesis of copper nanoparticles stabilized with cetylpyridinium chloride micelles. Journal of Advanced Materials Letters, Vol.8, pp. 404-409.
https://doi.org/10.5185/amlett.2017.1423
[7] Solanki, Jignasa & Sengupta, R & Murthy, Z.V.P.. (2010). Synthesis of copper sulphide and copper nanoparticles with microemulsion method. Solid State Sciences - SOLID STATE SCI. 12. 1560-1566. 10.1016/j.solidstatesciences.2010.06.021.
https://doi.org/10.1016/j.solidstatesciences.2010.06.021
[8] Zhou, L. , Wang. S, Ma,H., Ma, S,. Xu, D., Guo, Y.(2015). Size-controlled synthesis of copper nanoparticles in supercritical water. Chemical Engineering Research and Design. 98. 36-43.
https://doi.org/10.1016/j.cherd.2015.04.004
[9] Sreeju.N. Alex Rufus, Daizy Philip. (2016). Microwave-assisted rapid synthesis of copper nanoparticles with exceptional stability and their multifaceted applications. Journal of Molecular Liquids. 221. 1008-1021.
https://doi.org/10.1016/j.molliq.2016.06.080
[10] Umer, A., Naveed, S., Ramzan, N., & Rafique, M. S. (2012). Selection of a suitable method for the synthesis of copper nanoparticles. Nano, 7(05), 1230005.
https://doi.org/10.1142/S1793292012300058
[11] Song, X., Sun, S., Zhang, W., & Yin, Z. (2004). A method for the synthesis of spherical copper nanoparticles in the organic phase. Journal of colloid and interface science, 273(2), 463-469.
https://doi.org/10.1016/j.jcis.2004.01.019
[12] Mott, D., Galkowski, J., Wang, L., Luo, J., & Zhong, C. J. (2007). Synthesis of size-controlled and shaped copper nanoparticles. Langmuir, 23(10), 5740-5745.
https://doi.org/10.1021/la0635092
[13] Kapoor, S., & Mukherjee, T. (2003). Photochemical formation of copper nanoparticles in poly (N-vinylpyrrolidone). Chemical physics letters, 370(1), 83-87.
https://doi.org/10.1016/S0009-2614(03)00073-3
[14] Cheng, X., Zhang, X., Yin, H., Wang, A., & Xu, Y. (2006). Modifier effects on chemical reduction synthesis of nanostructured copper. Applied surface science, 253(5), 2727-2732.
https://doi.org/10.1016/j.apsusc.2006.05.125
[15] Liu, Q., Zhou, D., Nishio, K., Ichino, R., & Okido, M. (2010). Effect of reaction driving force on copper nanoparticle preparation by aqueous solution reduction method. Materials transactions, 51(8), 1386-1389.
https://doi.org/10.2320/matertrans.M2010067
[16] Khatoon, U. T., Nageswara Rao, G. V. S., & Mohan, M. K. (2013, July). Synthesis and characterization of copper nanoparticles by chemical reduction method. In Advanced Nanomaterials and Emerging Engineering Technologies (ICANMEET), 2013 International Conference on (pp. 11-14). IEEE.
https://doi.org/10.1109/ICANMEET.2013.6609221
[17] Ong, H. R., Khan, M. M. R., Ramli, R., Du, Y., Xi, S., & Yunus, R. M. (2015). Facile synthesis of copper nanoparticles in glycerol at room temperature: formation mechanism. RSC Advances, 5(31), 24544-24549.
https://doi.org/10.1039/C4RA16919K
[18] Rahimi, P., Hashemipour, H., Ehtesham Zadeh, M., & Ghader, S. (2010). Experimental Investigation on the Synthesis and Size Control of Copper Nanoparticle via Chemical Reduction Method. International Journal of Nanoscience and Nanotechnology, 6(3), 144-149.
[19] Dang, T. M. D., Le, T. T. T., Fribourg-Blanc, E., & Dang, M. C. (2011). Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2(1), 015009.
https://doi.org/10.1088/2043-6262/2/1/015009
[20] Zhang, Q. L., Yang, Z. M., Ding, B. J., Lan, X. Z., & Guo, Y. J. (2010). Preparation of copper nanoparticles by chemical reduction method using potassium borohydride. Transactions of Nonferrous Metals Society of China, 20, s240-s244.
https://doi.org/10.1016/S1003-6326(10)60047-7
[21] Lignier, P., Bellabarba, R., & Tooze, R. P. (2012). Scalable strategies for the synthesis of well-defined copper metal and oxide nanocrystals. Chemical Society Reviews, 41(5), 1708-1720.
https://doi.org/10.1039/C1CS15223H
[22] Cheng, X., Zhang, X., Yin, H., Wang, A., & Xu, Y. (2006). Modifier effects on chemical reduction synthesis of nanostructured copper. Applied surface science, 253(5), 2727-2732.
https://doi.org/10.1016/j.apsusc.2006.05.125
[23] Dang, T. M. D., Le, T. T. T., Fribourg-Blanc, E., & Dang, M. C. (2011). Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2(1), 015009.
https://doi.org/10.1088/2043-6262/2/1/015009
[24] Obraztsova, I. I., Simenyuk, G. Y., & Eremenko, N. K. (2009). Effect of various factors on the dispersity of copper nanopowders produced by reduction of copper salts with glycerol. Russian Journal of Applied Chemistry, 82(6), 981-985.
https://doi.org/10.1134/S1070427209060093
[25] Carroll, K. J., Reveles, J. U., Shultz, M. D., Khanna, S. N., & Carpenter, E. E. (2011). Preparation of elemental Cu and Ni nanoparticles by the polyol method: an experimental and theoretical approach. The Journal of Physical Chemistry C, 115(6), 2656-2664.
https://doi.org/10.1021/jp1104196
[26] Ong, H. R., Khan, M. R., Ramli, R., & Yunus, R. M. (2014, March). Synthesis of copper nanoparticles at room temperature using hydrazine in glycerol. In Applied Mechanics and Materials (Vol. 481, pp. 21-26).
https://doi.org/10.4028/www.scientific.net/AMM.481.21
[27] Khatoon, U. T., Nageswara Rao, G. V. S., & Mohan, M. K. (2013, July). Synthesis and characterization of copper nanoparticles by chemical reduction method. In Advanced Nanomaterials and Emerging Engineering Technologies (ICANMEET), 2013 International Conference on (pp. 11-14). IEEE.
https://doi.org/10.1109/ICANMEET.2013.6609221
[28] Liu, Q., Zhou, D., Nishio, K., Ichino, R., & Okido, M. (2010). Effect of reaction driving force on copper nanoparticle preparation by aqueous solution reduction method. Materials transactions, 51(8), 1386-1389.
https://doi.org/10.2320/matertrans.M2010067