The effects of interaction between Zinc and Manganese on the rate of growth and certain parameters of photosynthesis in tomato crop (Lycopersicon esculentum. Mill cv. Urbana Early 111)
Subject Areas : Geneticسمیه Ebrahimi 1 , سارا Saadatmand 2 , R.A Khavari-nejad 3
1 - Department of Biology, Faculty of Sciences, Islamic Azad University of Science and Research Branch, Tehran, Iran.
2 - Department of Biology, Faculty of Sciences, Islamic Azad University of Science and Research Branch, Tehran, Iran.
3 - Department of Biology, Faculty of Sciences, Islamic Azad University of Science and Research Branch, Tehran, Iran.
Keywords: growth, Toxicity, Zinc, Tomato, Manganese, Pigments of leaf,
Abstract :
In this study, the effects of interaction between zinc (0, 20, 30, and 60 µMZnSo47H2O) and manganese (0, 10, 20 and 30 µMMnSo4H2O) on certain parameters of growth and photosynthesis in 42-day old of tomato crop (Lycopersicon esculentum. Mill cv Urbana Early 111), has been investigated. Results showed that the resistant of tomato crop against stress of Zinc and Manganese, was little. After the first week's treatment, toxicity symptoms of Zinc and manganese was observed as overhang of parenchyma level and pigment accumulation of leaf. Parameters of growth and photosynthesis including values of root and leaf protein, insoluble and soluble sugars in the root, content of chlorophylls a and b, relative growth rate, specific leaf area and leaf area ratio were decreased under zinc and Manganese stresses. The results of this study showed that using high concentrations zinc and manganese caused high toxicity in tomato plants.
خاوری نژاد، ر. (1375) اصول آمار زیستی. انتشارات امید، ویرایش میکرو کامپیوتر.
خاوری نژاد، ر. (1387) فیزیولوژی گیاهی عملی. انتشارات امید.
_||_Agarwala, S.C., Sharma, C. P. and Kumar, A. (1963). Interrelationship of iron and manganese supply in growth, chlorophyll, and iron porphyrin enzymes in barley plants. J. Plant Physiol. 42: 603-609.
Ali, G., Srivastava, P.S. and Iqbal, M. (1999). Morphogenic and biochemical responses of Bacopa monniera cultures to zinc toxicity. Plant Sci. 143: 187–193.
Arnon, D.I. (1949). Copper enzymes in isolated chloroplast, polyphenol oxidase in Beta vulgasis. J. Plant Physiol. 24: 1-5.
Candan, N. and Tarhan, L. (2003). Changes in chiorophyll-carotenoid contents, antioxidant enzyme activities and lipid peroxidation levels in Zn-stressed Mentha pulegium. Turk 3 Chem. 27: 21-30.
Demirevska-Kepova, K., Simova-Stoilova, L., Stoyanova, Z. and Feller, U. (2004). Biochemical changes in barley plants after excessive supply of copper and manganese. Environ. Exp. Bot. 52: 3-266.
Doncheva, S., Georgieva, K., Vasssileva,V., Stoynova, Z., Popov, N. and Ignatov, G. (2005). Effects of succinate on manganese toxicity in pea plants. Plant Nutr. 28: 47-52.
Ducic, T. and Polle, A. (2005). Transport and detoxification of manganese and copper in plants. Braz.J. plant physiol. 17: 103-112.
Erdei, S., HegedtIs, A., Hauptmann, G. and Horv, G. (2002). Heavy metal induced physiological changes in the antioxidative response system. Acta Biologica. Szegediensis. 46: 89-90.
Ernst W. (1998). Effects of heavy metals in plants at the cellular and organismic level, in: Schuurmann G., Markert B. (Eds.), Bioaccumulation and Biological effects of chemicals, John Wiley. 587–620.
Fecht-Christoffers, M. Braun, H.P., Lemaitre-Guillier, C., Van Dorsselaer, A. and Horst, W. (2003). Effect of Manganese toxicity on the proteome of the leaf apoplast incowpea. J. Plant Physiol. 133: 1935-1946.
Foy, C.D., Scott, B. J. and Fisher, J. A. (1988). Genetic differences in plant tolerance to manganese toxicity. In: Graham, R.D., Hannam, R.J. and Uren, N.C. (Eds.), Manganese in Soils and Plants. Kluwer Academic Publishers, Dordrecht, The Netherlands, 293-307.
Gavalas, N. and Clark, H.E. (1971). On the Role of Manganese in Photosynthesis. J. Plant Physiol. 47: 139-143.
Godbold, D.L. and Huttermann, A. (1985). Effect of zinc, cadmium and mercury on root elongation of Picea abies (Karst.) seedlings, and the significance of these metals to forest die-back. Environ. Pollut. 38: 375–381.
Kochert, O. (1978). Carbohydrate determination by the phenolsulfuric acid method. Handbook Physiol. Meth., Camb. Univ. Press, 96-97.
Lowry, O.H., Rosebrough, N.J., Forr, A.L. and Randall, R.J. (1951). Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265-275.
Monnet, F., Vaillant, N., Vernay, P., Coudret, A., Sallanon, H. and Hitmi, A. (2001). Relationship between PSII activity, fixation, and Zn, Mn and Mg contents of Lolium perenne under zinc stress. J. Plant Physiol. 158: 1137–1144.
Muller, P., Li, X.P. and Niyogi, K. (2001) Non-photochemical quenching.a response to excess light energy. J. Plant Physiol. 125: 1558-1566.
Patsikka, E., Kairavuo, M., Sersen, F., Aro, E. M. and Tyystjarvi, E. (2002). Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll. J. Plant Physiol. 129: 1359-1367.
Rauser, W.E. (1984). Estimating metallothionein in small root samples of Agrostis gigantea and Zea mays exposed to cadmium. J. Plant Physiol. 116: 253–260.
Rout, G. R. and Premananda, D. (2003). Effect of metal toxicity on plant growth and metabolism: I. Zinc, Agrono. 23: 3–11.
Shenker, M., Plessner, O.E. and Tel-Or, E. (2004). Manganese nutrition effects on tomato growth ,chlorophyll concentration and superoxide dismutase activity. J. Plant. physiol. 161: 197-202.
Shi, Q., Bao, Z., Zhu, Z., He, Y., Qian, Q. and Yu, J. (2005). Silicon mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochemist. 66: 1551-1559.
Sresty T.V.S. and Madhava Rao, K.V. (1999). Ultrastructural alterations in response to zinc and nickel stress in the root cells of pigeonpea. Environ. Exp. Bot. 41: 3–13.
Woolhouse, H.W. (1983). Toxicity and tolerance in the responses of plants to metals, in: Lange O.L. (Ed.), Encyclopedia of Plant Physiology, New Series, Vol. 12, Part-C, Physiological Plant Ecology – III, Springer-Verlag, Berlin, 245–300.