Nader Mokhtarian
1
(
Department of Chemical Engineering, Shahreza Branch, Islamic Azad University, Shahreza, Iran
)
majid yaghoubi
2
(
Department of Chemical Enginerring, Shahreza Branch, Islamic Azad University
)
Alireza Zangene
3
(
Department of Chemistry, Shahreza Branch, Islamic Azad University, Shahreza, Iran.
)
Mohammad Hassan vakili
4
(
Department of Chemical Enginerring, Shahreza Branch, Islamic Azad University
)
Keywords:
Abstract :
[1] S. H. A. Hassan, A. el Nasser A. Zohri, R. M. F. Kassim, Electricity generation from sugarcane molasses using microbial fuel cell technologies. Energy, 2019. 178: p. 538-543.
[2] R. Fang, A. Dhakshinamoorthy, Y. Li, H. Garcia, Metal organic frameworks for biomass conversion. Chemical Society Reviews, 2020. 49: p.3638-3687.
[3] P. A. Owusu, S. Asumadu-Sarkodie, S. Dubey, A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering, 2016. 3, No. 1: p. 1167990.
[4] A. J. Slate, K. A. Whitehead, D. A. C. Brownson, C. E. Banks, Microbial fuel cells: An overview of current technology. Renewable and Sustainable Energy Reviews, 2018. 101: p. 60-81.
[5] C. Vilela, A. J. D. Silvestre, F. M. L. Figueiredo, C. S. R. Freire, Nanocellulose-based materials as components of polymer electrolyte fuel cells. Journal of Materials Chemistry A, 2019. 7, No. 35: (p. 20045-20074.
[6] E. C. A. Trindade, R.V. Antônio, R. Brandes, L. de Souza,G. Neto, V.M. Vargas, C.A. Carminatti, D. de Oliveira Souza Recouvreux, Carbon fiber-embedded bacterial cellulose/polyaniline nanocomposite with tailored for microbial fuel cells electrode. Journal of Applied Polymer Science, 2020. 137: p. 49036.
[7] S.G.A.Flimban, T.Kim, I.M.I.Ismail, S. Oh, Overview of Microbial Fuel Cell (MFC) Recent Advancement from Fundamentals to Applications: Microbial Fuel Cell Designs, Major Elements, and Scalability. Preprints, 2018.1: p. 2018100763.
[8] G. Mohanakrishna, I. M. Abu-Reesh, R. I. Al-Raoush, Z. He, Cylindrical graphite based microbial fuel cell for the treatment of industrial wastewaters and bioenergy generation. Bioresource Technology, 2018. 247: p. 753-758.
[9] S. Singh, D. S. Songera, A review on microbial fuel cell using organic waste as feed. CIBTech Journal of Biotechnology, 2012. 2, no. 1: p. 17-27.
[10] M. Rahimnejad, G. Bakeri, G. Najafpour, M. Ghasemi, A. Zirepour, A review on the role of proton exchange membrane on the performance of microbial fuel cell. Polymers for advanced technologies, 2014. 25, no. 12: p. 1426-1432.
[11] E. Yang, K. J. Chae, I. Kim, Assessment of different ceramic filtration membranes as a separator in microbial fuel cells. Desalination and Water Treatment, 2016. 57: p. 1-9.
[12] M. Rahimnejad, G. Bakeri, G. Najafpour, M. Ghasemi, S. E. Oh, A review on the effect of proton exchange membranes in microbial fuel cells. Biofuel Research Journal, 2014. 1, no. 1: p. 7-15.
[13] Y. Prykhodko, K. Fatyeyeva, L. Hespel, S. Marais, Progress in hybrid composite Nafion®-based membranes for proton exchange fuel cell application. Chemical Engineering Journal, 2021. 409: p. 127329.
[14] L. G. Boutsika, A. Enotiadis, I. Nicotera, C.Simari, G. Charalambopoulou, E. P. Giannelis, T. Steriotis, Nafion® nanocomposite membranes with enhanced properties at high temperature and low humidity environments. International Journal of Hydrogen Energy, 2016. 41, 47: p. 22406-22414.
[15] L. Gao, X. Q.Li, L.Wang, W. Z. Liu, A. J.Wang, Inorganic Compound Synthesis in Bioelectrochemical System. Bioelectrosynthesis: Principles and Technologies for Value‐Added Products, 2020. Section IV: p. 183-215.
[16] R. Ramkumar, M. M. Sundaram, Electrochemical synthesis of polyaniline cross-linked NiMoO4 nanofibre dendrites for energy storage devices. New Journal of Chemistry, 2016. 40: p.7456-7464.
[17] S. Pujiastuti, H. Onggo, Effect of various concentration of sulfuric acid for Nafion membrane activation on the performance of fuel cell. AIP Conference Proceedings, 2016. no. 1, 1711: p.060006.
[18] M. B. Karimi, F. Mohammadi, K. Hooshyari, Effect of deep eutectic solvents hydrogen bond acceptor on the anhydrous proton conductivity of Nafion membrane for fuel cell applications. Journal of Membrane Science, 2020. 605: p. 118116.
[19] R. Kuwertz, C. Kirstein, T. Turek, U. Kunz, Influence of acid pretreatment on ionic conductivity of Nafion® membranes. Journal of Membrane Science, 2016. 500: p. 225-235.
[20] J. Chen, K. Li, L. Chen, R. Liu, X. Huang, D. Ye, Conversion of Fructose into 5-Hydroxymethylfurfural Catalyzed by Recyclable Sulfonic Acid–Functionalized Metal–Organic Frameworks. Green Chemistry, 2014. 16: p. 2490-2499.
[21] L. Ma,a L. Xu,a H. Jianga and X. Yuan, Comparative research on three types of MIL-101(Cr)-SO3H for esterification of cyclohexene with formic acid. RSC AdvANCES, 2019. 9: p. 5692-5700.
[22] M. Xu, Z. Liu, X. Huai, L. Lou, J. Guo, Supplementary Material for Screening of Metal−Organic Frameworks for Adsorption Heat Transformation under the Guidance of the Structure−Property Relationship. RSC Adv., 2020. 10 : p. 34621-34631.
[23] S. Mortazavi, A. Abbasi, M. Masteri-Farahani, F. Farzaneh, Sulfonic Acid Functionalized MIL-101(Cr) Metal-Organic Framework for Catalytic Production of Acetals. ChemistryEurope, 2019: p. 7495-7501.
[24] N. A. Khan, D. K. Yoo, S. H. Jhung, Polyaniline-encapsulated metal–organic framework MIL-101: adsorbent with record-high adsorption capacity for the removal of both basic quinoline and neutral indole from liquid fuel. ACS applied materials & interfaces, 2018. 10, no. 41: p. 35639-35646.
[25] S. L. Badea, S. Enache, R. Tamaian, V. C. Niculescu, M. Varlam, C. V. Pirvu, Enhanced open-circuit voltage and power for two types of microbial fuel cells in batch experiments using Saccharomyces cerevisiae as biocatalyst. Journal of Applied Electrochemistry, 2019. 49, no. 1: p. 17-26.
[26] L. P. Fan, J. J. Li, Overviews on internal resistance and its detection of microbial fuel cells, International Journal of Circuits. Systems and Signal Processing, 2016. 10: p. 316-320.
[27] R.S. Raja Rafidah, W. Y. Wong, Recent progress in the development of aromatic polymer-based proton exchange membranes for fuel cell applications. Polymers, 2020. 12, no. 5: p.1061.
[28] M. B. Karimi, F. Mohammadi, K. Hooshyari, Recent approaches to improve nafion performance for fuel cell applications: A review. International Journal of Hydrogen Energy, 2019. 44, no. 54: p. 28919-28938.
[29] W. Yanmin, Preparation and application of polyaniline nanofibers: an overview. Polymer International, 2018. 67, no. 6: p. 650-669.