Polymer-Assisted Synthesis and Characterization of Nickel Aluminate Nanoparticles for Photodegradation of Methylene Blue
Subject Areas : CeramicsSogol Bakhtiarvand 1 , Seyed Ali Hassanzadeh Tabrizi 2
1 - Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
2 - Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
Keywords:
Abstract :
[1] Z. Mengting, T.A. Kurniawan, S. Fei, T. Ouyang, M.H.D. Othman, M. Rezakazemi, S. Shirazian, Applicability of BaTiO3/graphene oxide (GO) composite for enhanced photodegradation of methylene blue (MB) in synthetic wastewater under UV–vis irradiation, Environ. Pollut. 255 (2019) 113182.
[2] A.A. Shah, M.A. Bhatti, A. Tahira, A.D. Chandio, I.A. Channa, A.G. Sahito, E. Chalangar, M. Willander, O. Nur, Z.H. Ibupoto, Facile synthesis of copper doped ZnO nanorods for the efficient photo degradation of methylene blue and methyl orange, Ceram. Int. 46 (2020) 9997–10005.
[3] M. Saleem, J. Iqbal, A. Nawaz, B. Islam, I. Hussain, Synthesis, characterization, and performance evaluation of pristine and cerium‐doped WO3 nanoparticles for photodegradation of methylene blue via solar irradiation, Int. J. Appl. Ceram. Technol. 17 (2020) 1918–1929.
[4] K.K. Chenab, B. Sohrabi, A. Jafari, S. Ramakrishna, Water treatment: Functional nanomaterials and applications from adsorption to photodegradation, Mater. Today Chem. 16 (2020) 100262.
[5] S. Yu, Y. Wang, F. Sun, R. Wang, Y. Zhou, Novel mpg-C3N4/TiO2 nanocomposite photocatalytic membrane reactor for sulfamethoxazole photodegradation, Chem. Eng. J. 337 (2018) 183–192.
[6] X. Hu, G. Wang, J. Wang, Z. Hu, Y. Su, Step-scheme NiO/BiOI heterojunction photocatalyst for rhodamine photodegradation, Appl. Surf. Sci. 511 (2020) 145499.
[7] M.H. Aghaali, S. Firoozi, Enhancing the catalytic performance of Co substituted NiAl2O4 spinel by ultrasonic spray pyrolysis method for steam and dry reforming of methane, Int. J. Hydrogen Energy. 46 (2021) 357–373.
[8] A. Morales-Marín, J.L. Ayastuy, U. Iriarte-Velasco, M.A. Gutiérrez-Ortiz, Biohydrogen production by glycerol Aqueous-Phase Reforming: Effect of promoters (Ce or Mg) in the NiAl2O4 spinel-derived catalysts, J. Environ. Chem. Eng. 9 (2021) 106433.
[9] M.R.I. Faruque, E. Ahamed, M.A. Rahman, M.T. Islam, Flexible nickel aluminate (NiAl2O4) based dual-band double negative metamaterial for microwave applications, Results Phys. 14 (2019) 102524.
[10] N.M.D. Vitorino, A. V Kovalevsky, M.C. Ferro, J.C.C. Abrantes, J.R. Frade, Design of NiAl2O4 cellular monoliths for catalytic applications, Mater. Des. 117 (2017) 332–337.
[11] C. Chen, M. Xu, K. Zhang, H. An, G. Zhang, B. Hong, J. Li, Y. Lai, Atomically ordered and epitaxially grown surface structure in core-shell NCA/NiAl2O4 enabling high voltage cyclic stability for cathode application, Electrochim. Acta. 300 (2019) 437–444.
[12] S.G. Menon, H.C. Swart, Microwave-assisted synthesis of blue-green NiAl2O4 nanoparticle pigments with high near-infrared reflectance for indoor cooling, J. Alloys Compd. 819 (2020) 152991.
[13] R. Pournajaf, S.A. Hassanzadeh-Tabrizi, Polyacrylamide synthesis of nanostructured copper aluminate for photocatalytic application, J. Adv. Mater. Process. 5 (2018) 12–19.
[14] S. Wang, D. Li, C. Yang, G. Sun, J. Zhang, Y. Xia, C. Xie, G. Yang, M. Zhou, W. Liu, A novel method for the synthesize of nanostructured MgFe2O4 photocatalysts, J. Sol-Gel Sci. Technol. 84 (2017) 169–179.
[15] S. Wang, S. Tang, H. Gao, L. Fang, Q. Hu, G. Sun, X. Chen, C. Yu, H. Liu, X. Pan, Modified polyacrylamide gel synthesis of CeO2 nanoparticles by using cerium sulfate as metal source and its optical and photoluminescence properties, J. Mater. Sci. Mater. Electron. 32 (2021) 10820–10834.
[16] M. Ahmadyari-Sharamin, S.A. Hassanzadeh-Tabrizi, Polyacrylamide gel synthesis, characterization, and optical properties of Co1-xNixCr2O4 spinel nanopigment, J. Sol-Gel Sci. Technol. 99 (2021) 534–545.
[17] X. Su, G. Bai, J. Zhang, J. Zhou, Y. Jia, Preparation and flash sintering of MgTiO3 nanopowders obtained by the polyacrylamide gel method, Appl. Surf. Sci. 442 (2018) 12–19.
[18] M.A.R. Miranda, J.M. Sasaki, The limit of application of the Scherrer equation, Acta Crystallogr. Sect. A Found. Adv. 74 (2018) 54–65.
[19] M. Łączka, K. Cholewa-Kowalska, K. Kulgawczyk, M. Klisch, W. Mozgawa, Structural examinations of gel-derived materials of the CaO–P2O5–SiO2 system, J. Mol. Struct. 511 (1999) 223–231.
[20] R. Balasubramanian, R. Srinivasan, J. Lee, Barrier, rheological, and antimicrobial properties of sustainable nanocomposites based on gellan gum/polyacrylamide/zinc oxide, Polym. Eng. Sci. 61 (2021) 2477–2486.
[21] F. Majid, J. Rauf, S. Ata, I. Bibi, A. Malik, S.M. Ibrahim, A. Ali, M. Iqbal, Synthesis and characterization of NiFe2O4 ferrite: Sol–gel and hydrothermal synthesis routes effect on magnetic, structural and dielectric characteristics, Mater. Chem. Phys. 258 (2021) 123888.
[22] J.J.H. McCallister, M.D. Gammage, J.W. Keto, M.F. Becker, D. Kovar, Influence of agglomerate morphology on micro cold spray of Ag nanopowders, J. Aerosol Sci. 151 (2021) 105648.
[23] C. Hu, Z. Zhang, H. Liu, P. Gao, Z.L. Wang, Direct synthesis and structure characterization of ultrafine CeO2 nanoparticles, Nanotechnology. 17 (2006) 5983.
[24] U.Z.M. Zaidi, A.R. Bushroa, R.R. Ghahnavyeh, R. Mahmoodian, Crystallite size and microstrain: XRD line broadening analysis of AgSiN thin films, Pigment Resin Technol. 48 (2019) 473-480.
[25] C. Ragupathi, J.J. Vijaya, L.J. Kennedy, Preparation, characterization and catalytic properties of nickel aluminate nanoparticles: A comparison between conventional and microwave method, J. Saudi Chem. Soc. 21 (2017) S231–S239.
[26] V. Elakkiya, R. Abhishekram, S. Sumathi, Copper doped nickel aluminate: Synthesis, characterisation, optical and colour properties, Chinese J. Chem. Eng. 27 (2019) 2596–2605.
[27] F.Z. Akika, M. Benamira, H. Lahmar, A. Tibera, R. Chabi, I. Avramova, Ş. Suzer, M. Trari, Structural and optical properties of Cu-substitution of NiAl2O4 and their photocatalytic activity towards Congo red under solar light irradiation, J. Photochem. Photobiol. A Chem. 364 (2018) 542–550.
[28] P.R. Jubu, F.K. Yam, V.M. Igba, K.P. Beh, Tauc-plot scale and extrapolation effect on bandgap estimation from UV–vis–NIR data–a case study of β-Ga2O3, J. Solid State Chem. 290 (2020) 121576.
[29] C. Venkataramana, S.M. Botsa, P. Shyamala, R. Muralikrishna, Photocatalytic degradation of polyethylene plastics by NiAl2O4 spinels-synthesis and characterization, Chemosphere. 265 (2021) 129021.
[30] M. Arunkumar, A.S. Nesaraj, One pot chemical synthesis of ultrafine NiAl2O4 nanoparticles: physico-chemical properties and photocatalytic degradation of organic dyes under visible light irradiation, Inorg. Nano-Metal Chem. 51 (2021) 910–917.
[31] V. Elakkiya, Y. Agarwal, S. Sumathi, Photocatalytic activity of divalent ion (copper, zinc and magnesium) doped NiAl2O4, Solid State Sci. 82 (2018) 92–98.
[32] M. Arunkumar, A. Samson Nesaraj, Photocatalytic degradation of malachite green dye using NiAl2O4 and Co doped NiAl2O4 nanophotocatalysts prepared by simple one pot wet chemical synthetic route, Iran. J. Catal. 10 (2020) 235–245.
[33] A. Iben Ayad, D. Luart, A. Ould Dris, E. Guénin, Kinetic analysis of 4-nitrophenol reduction by “water-soluble” palladium nanoparticles, Nanomaterials. 10 (2020) 1169