Finite Element Modeling of Strain Rate and Grain Size Dependency in Nanocrystalline Materials
Subject Areas : Chemistry
1 - Department of Mechanical Engineering,Islamic Azad University of Najafabad, Isfahan, Iran
Keywords:
Abstract :
[1] R.J. Asaro, S. Suresh, "Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins", Acta Mater., Vol. 53, 2005, pp. 3369-3382.
[2] H. Van Swygenhoven, P.M. Derlet, A.G. Froseth, "Nucleation and propagation of dislocations in nanocrystalline fcc metals", Acta Mater., Vol. 54, 2006, pp. 1975-1983.
[3] Z. Jiang, X. Liu, G. Li, Q. Jiang, J. Lian, "Strain rate sensitivity of a nanocrystalline Cu synthesized by electric brush plating", Appl. Phys. Lett., Vol. 88, 2006, p.143115.
[4] Z. Jiang, H. Zhang, C. Gu, Q. Jiang, J. Lian, "Deformation mechanism transition caused by strain rate in a pulse electric brush-plated nanocrystalline Cu", J. Appl. Phys., Vol. 104, 2008, p. 053505.
[5] G. Wang, J. Lian, Z. Jiang, L. Qin, Q. Jiang, "Compressive creep behavior of an electric brush-plated nanocrystalline Cu at room temperature", J. Appl. Phys., Vol. 106, 2009, p. 086105.
[6] S. Cheng, E. Ma, Y.M. Wang, L.J. Kecskes, K.M. Youssef, C.C. Koch, U.P. Trociewitz, K. Han, "Tensile properties of in situ consolidated nanocrystalline Cu", Acta Mater., Vol. 53, 2005, pp. 1521-1533.
[7] A. Giga, Y. Kimoto, Y. Takigawa, K. Higashi, "Demonstration of an inverse Hall-Petch relationship in electrodeposited nanocrystalline Ni-W alloys through tensile testing", Scr. Mater., Vol. 55, 2006, pp. 143-146.
[8] C.A. Schuh, T.G. Nieh, T. Yamasaki, "Hall-Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel", Scr. Mater., Vol. 46, 2002, pp. 735-740.
[9] V.Y. Gertsman, M. Hoffmann, H. Gleiter,R. Birringer, "The study of grain size dependence of yield stress of copper for a wide grain size range", Acta Metall. Mater., Vol. 42, 1994, pp. 3539-3544.
[10] H. Gleiter," Nanocrystalline materials", Prog. Mater Sci., Vol. 33, 1989, pp. 223-315.
[11] Y.M. Wang,E. Ma, "Strain hardening, strain rate sensitivity, and ductility of nanostructured metals", Mater. Sci. Eng., A, Vol. 375-377, 2004, pp. 46-52.
[12] X. Li, J. Zhou, R. Zhu, Y. Liu, H. Jiang., "Grain rotation dependent non-homogeneous deformation behavior in nanocrystalline materials", Mater. Sci. Eng., A, Vol. 527, 2010, pp.5677–5685.
[13] Y. Wei, A.F. Bower, H. Gao, "Enhanced strain-rate sensitivity in fcc nanocrystals due to grain-boundary diffusion and sliding", Acta Mater., Vol. 56, 2008, pp. 1741-1752.
[14] T.G. Desai, P. Millett, D. Wolf, "Is diffusion creep the cause for the inverse Hall-Petch effect in nanocrystalline materials?", Mater. Sci. Eng., A, Vol. 493, 2008, pp. 41-47.
[15] K.A. Padmanabhan, G.P. Dinda, H. Hahn, H. Gleiter, "Inverse Hall-Petch effect and grain boundary sliding controlled flow in nanocrystalline materials", Mater. Sci. Eng., A, Vol. 452-453, 2007, pp. 462-468.
[16] H.W. Song, S.R. Guo, Z.Q. Hu, "A coherent polycrystal model for the inverse Hall-Petch relation in nanocrystalline materials", Nanostruct. Mater., Vol. 11, 1999, pp. 203-210.
[17] G.J. Fan, H. Choo, P.K. Liaw, E.J. Lavernia, "A model for the inverse Hall-Petch relation of nanocrystalline materials", Mater. Sci. Eng., A, Vol. 409, 2005, pp. 243-248.
[18] X. Liu, F. Yuan, Y. We, “Grain size effect on the hardness of nanocrystal measured by the nanosize indente”, Appl. Surf. Sci., Vol. 279, 2013, pp.159–166.
[19] Y. Liu, J. Zhou, X. Ling, "Impact of grain size distribution on the multiscale mechanical behavior of nanocrystalline material", Mater. Sci. Eng., A, Vol. 527, 2010, pp.1719–1729.
[20] H.S. Kim, Y. Estrin, M.B. Bush, "Plastic deformation behaviour of fine-grained materials", Acta Mater., Vol. 48, 2000, pp.493–504.
[21] Y.J. Wei, L. Anand, "Grain-boundary sliding and separation in polycrystalline metals: application to nanocrystalline fcc metals", J. Mech. Phys. Sol., Vol. 52, 2004, pp. 2587-2616.
[22] R. Jafari Nedoushan, M. Farzin, M. Mashayekhi, "Effects of strain rate and grain size on behavior of nano crystalline materials", J. Nano Res., Vol. 17, 2012, pp. 35-51.
[23] R. Jafari Nedoushan, M. Farzin, "Effect of Hydrostatic Pressure on Nano Crystalline Materials Behavior", J. Nano Res., Vol. 18-19, 2012, pp. 27-42.
[24] P. Valentini, T. Dumitric."Microscopic theory for nanoparticle-surface collisions in crystalline silicon", Phys. Rev. B: Condens. Matter., Vol. 75, 2007, pp. 224106-1-224106-9.
[25] P. Valentini, W.W. Gerberich, T. Dumitric, "Phase-Transition Plasticity Response in Uniaxially Compressed Silicon Nanospheres", Phys. Rev. Lett., Vol. 99, 2007, pp.175701-1-175701-4.
[26] A. C. F. Cocks, "Interface reaction controlled creep", Mech. Mater., Vol. 13, 1992, pp.165-174.
[27] J. Pan, A. C. F. Cocks, "Computer simulation of superplastic deformation", Comput. Mater. Sci., Vol. 1, 1993, pp. 95-109.
[28] B. Zhu, R.J. Asaro, P. Krysl,R. Bailey, "Transition of deformation mechanisms and its connection to grain size distribution in nanocrystalline metals", Acta Mater., Vol. 53, 2005, pp. 4825-4838.
[29] Y.J. Wei, L. Anand, "Grain-boundary sliding and separation in polycrystalline metals: application to nanocrystalline fcc metals", J. Mech. Phys. Solids, Vol. 52, 2004, pp. 2587-2616.
[30] X. Qing, G. Xingming, "The scale effect on the yield strength of nanocrystalline materials", Int. J. Solids Struct., Vol. 43, 2006, pp. 7793–7799
[31] R.J. Asaro, A. Needleman, "Texture development and strain hardening in rate dependent polycrystals", Acta Metall., Vol. 33, 1985, pp. 923-953.
[32] D. Peirce, R.J. Asaro, A. Needleman, "An analysis of nonuniform and localized deformation in ductile single crystals", Acta Metall., Vol. 30, 1982, pp. 1087-1119.
[33] R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, S. Suresh, "Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel", Acta Mater., Vol. 51, 2003, pp. 5159–5172.
[34] S. Li, J. Zhou, L. Ma, N. Xu, R. Zhu, X. He,"Continnum level simulation on the deformation behavior of nanocrystalline nikel", Comput. Mater. Sci., Vol. 45, 2009, pp.390-397.
[35] N. Ahmed, A. Hartmaier, “A two-dimensional dislocation dynamics model of the plastic Deformation of polycrystalline metals”, J. Mech. Phys. Solids, Vol. 58, 2010, pp.2054–2064.
[36] S. Gollapudi, K.V. Rajulapat, I. Charit, C.C. Kocha, R.O. Scattergood, K.L. Murty, "Creep in nanocrystalline materials: Role of stress assisted grain growth", Mater. Sci. Eng., A, Vol. 527, 2010, pp.5773–5781.
[37] C.F.O. Dahlberg, J. Faleskog, "Strain gradient plasticity analysis of the influence of grain size and distribution on the yield strength in polycrystals", Eur. J. Mech. A/Solid., Vol. 44, 2014, pp.1–16.