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Nanocrystalline materials show a higher strain-rate sensitivity in
contrast to the conventional coarse-grained materials and a different
grain size dependency. To explain these phenomenon, a finite
element model is constructed that considers both grain interior and
grain boundary deformation of nanocrystalline materials. The model
consist of several crystalline cores with different orientations and
grain boundary phase. The nonlinear behavior of the nanocrystalline
core is implemented by a grain size dependent crystal plasticity. The
boundary phase is assumed to have the mechanical properties of
quasi-amorphous material. The constitutive equations for both
grains interior and boundary phase are implemented into the finite-
element software Abaqus. A calibration procedure was used to tune
some parameters of the model with the previously published
experimental data on the nanocrystalline copper. Then the model is
used to predict the material behavior in various strain rates and grain
sizes. The stresses obtained from these simulations match well with
the experimental data for nanocrystalline copper at different strains
and strain rates. Deviation from the Hall-Petch law and inverse Hall-
Petch effect are also well illustrated by the model.
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1.Introduction
Experimental observations have shown that
nano-structured metals exhibit deformation
characteristics that are highly sensitive to the
rate of loading [1-6]. For example experiments
on nanocrystalline (nc) metals reported a more
than 10-fold increase in strain-rate sensitivity in
contrast to their conventional coarse-grained
materials [3, 5]. Rather than this difference
strength of ultrafine grained materials tends to
deviate from the Hall–Petch law and eventually
declines this rule as the grain size reduces to the
very fine scale [7-9].

Experimental evidences have shown that
when the grain size of polycrystalline metals
transits through the micrometer down to the
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nanometer, there are accompanying transitions
in the mechanisms of inelastic deformation [10-
11]. It is seemed that both grain interior
deformation and grain boundary (GB)
deformation mechanisms, including GB
diffusion and GB sliding, play important roles in
nc materials behavior [7,12]. The variation of
strain-rate sensitivity, with grain size and
deviation from Hall–Petch law can be explained
in terms of deformation mechanisms transitions.

Wei et al [13] explain the enhanced strain rate
sensitivity of nc materials in terms of GB
mechanisms. There are some models that
consider both grain interior and GBs to explain
deviation from Hall–Petch law or inverse Hall–
Petch effect [14-19]. Kim et al. [20] modeled the
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plastic deformation of nc materials with a
constitutive equation based on the evolution of
the dislocation density, and included a
contribution from diffusion creep (sliding)
controlled plastic flow. Anand and Wei [21]
introduced cohesive elements along the grain
boundaries to model grain-boundary sliding.
There are also some micro-macro constitutive
models that considers both grain interior and GB
deformations [22, 23]. Grain interior
deformation in nc materials is believed to occurs
due to motion of dislocations (partial and
complete) and absorption and emission of
dislocations by GBs. In the current work it is
assumed that motion of dislocations is the main
source of grain interior deformation. However
for investigating materials that phase transition
is also an important deformation mechanism, the
presented constitutive behavior for grain interior
should be modified as suggested by Valentini et
al [24, 25].

In this paper, a unit cell model is proposed that
considers GB deformations as well as grain
interior deformation to investigate nc materials
behavior. The grains interior deformation is
modeled by a grain size dependent crystal
plasticity.  The increase in flow strength of the
grains with reducing grain size is modeled by
considering the hardening of individual slip
systems a function of grain size. The boundary
phase is assumed to have the mechanical
properties of quasi-amorphous material and is
modeled by an elastic perfectly plastic
constitutive law.

The proposed model can well predict nc-Cu
strength for various strain rates, strains and grain
sizes. Deviation from the Hall-Petch law and
inverse Hall-Petch effect for very fine grain
sizes are also observed in the results of the
model.

2.Deformation mechanisms of nc
materials
As it is mentioned above studying deformation
mechanisms can help to the understanding of the
behavior of materials with grain sizes in the
range of nanometer. This section introduces
some of the proposed physical mechanisms
responsible for the specific behaviors in nc
materials.

2.1. Grain-boundary sliding
In response to shear stress on a grain boundary,
two neighboring grains can slide with respect to
each other. In conventional polycrystalline
metals, grain-boundary sliding only manifests
itself at temperatures above half of the material
melting temperature. According to the physical
experiments, it is proposed that grain-boundary
sliding plays a major role in nc metals
deformation at ambient temperature.

2.2. Grain boundary diffusion
The atoms adjacent to the grain boundary are
assumed to be mobile. Atoms may detach from
each grain, diffuse along the boundary, and then
reattach to one of the two adjacent grains. In this
process, the atoms detach from regions of the
grain boundary that are subjected to
compressive stress and migrate to regions that
are under tensile stress [26, 27]. This mechanism
not only causes deformation but also help the
grain boundary sliding process to produce a
consistent deformation.

2.3. Grain interior plasticity
In nc material, grain interior plasticity occurs
due to both complete and partial dislocations
motions as discussed by Zhu et al [28].
Molecular dynamics simulations show that
when grain-boundary deformation cannot be
accommodated due to geometric restrictions,
local stress concentrations develop to cause the
emission of a few partial dislocations from grain
boundaries, and these high stresses drive the
partial dislocations across the grain interiors to
be absorbed in the opposite grain boundaries
[29].

3.Finite element model description
3.1. Model geometry and assumptions

In the framework of the unit cell approach, the
behavior of materials with complex
microstructures is studied by carrying out
numerical or analytical studies of the behavior
of some cutout of the microstructure. The main
assumption, which must be justified, is that the
microstructure of whole material can be
considered as a periodically repeating
microstructure of the cutout, and the cutout is
therefore representative for the microstructure
of the whole material. Deriving unit cell model
for nc material can be done on the basis of a
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typical micrograph of the real microstructure.
Fig. 1 shows a micrograph of a crystalline
material and idealization of it into a structured
model. In the final model each hexagonal is
representative of a nanocrystal of cu that is
randomly oriented due to the global coordinate
system. Size of each crystal is equal to the
average grain size of the real material. The
number of crystals that determines unit cell
dimensions should be enough large that model
results do not change by repeating the random
orientations.

The unit cell model should include grain
boundaries rather than crystal cores. The model
assumes that grain boundary of a certain
thickness exist in it to capture effect of grain

boundary mechanisms. The thickness is about 2
nm for all grain sizes [30]. Fig. 2 shows the
complete unit cell model with the average grain
size of 30 nm.

3.2. Constitutive models for various zones of
the unit cell
After constructing the unit cell model, material
behavior should be assigned to each zone. For
all of the crystal cores, a grain size dependent
crystal plasticity that is explained in the next
section, is used. The only difference between a
grain and its neighbor is grain orientation. An
elastic-perfectly plastic behavior is used for
boundary phase.

Fig 1. Micrograph of a crystalline material and idealization of it into a structured model

Fig 2. Unit cell model considering grain boundaries with the average grain size of 30nm

3.3. Material behavior for unit cell model.
3.3.1. Grains interior behavior

Standard crystal plasticity is inadequate to
represent the limited amount of inelastic
deformation due to emission and eventual
absorption of the relatively few (partial or

complete) dislocations from GBs in nc
materials. However, since the few dislocations
in these materials are still expected to move on
slip systems, the mathematical structure of
continuum crystal plasticity is still useful.
Hence, the classical framework of rate-
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dependent single crystal plasticity is employed
to model grain-interior plasticity. In this paper,
Zhu et al. [28] work will be used. In this
framework, deformation gradient is
decomposed into elastic and plastic parts as:

p
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and the velocity gradient and its symmetric
and anti-symmetric parts are also decomposed
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The elastic constitutive equation for a crystal
is specified by:

e
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where ijT̂ is the Jaumann rate of Kirchhoff

stress tensor considering the lattice rotations,
and ijklC is the elastic moduli tensor. Plastic

flow takes place through slip on prescribed
crystallographic slip systems, with each system
 that is defined by a slip-plane normal 
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where  is the shearing rate on the slip system
 and  can be calculated using the rate-

dependent law suggested by Asaro and
Needleman [31] as:
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here,  0
 and k denote a reference strain-rate

and strain rate sensitivity associated with

dislocation motion and c is the slip resistance to
complete dislocations motion and depends on

grain size d.
 is the resolved shear stress on

the slip system  and is related to the stress
tensor as:

ijji ms   (9)

The grain size dependence of c is believed to
arise mainly from the increasing resistance to
nucleation of dislocation loops as the grain size
decreases [12]. Therefore, in the current work, it
is assumed that initial slip resistance is a
constant value for different grain sizes but strain
hardening increases as the grain size decreases.
The strain hardening is characterized by the
evolution of the slip resistance through the
incremental relation:
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here h is the slip hardening modulus. The self

hardening modulus on each slip system can be
calculated using the hardening law suggested by
Peirce et al [32]:
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here o is the yield stress which equals the

initial value of c , s is saturation stress and oh
is the initial hardening modulus. The latent
hardening can be calculated from:

  qhh (12)

where q is latent hardening coefficient and in
this work q=1. In the current work, it is assumed
that oh depends on grain size through:
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here h is the initial hardening modulus of a
very large grain. In Eq. 11  is the cumulative
shear strain in all slip systems:
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In this approach, it is assumed that in grain
sizes less than critical grain size cdd  both
partial dislocations and full dislocations are
active. Therefore, plastic deformation occurs on
the 12 {111}(110) slip systems and the
12{111}(112) twin systems of fcc materials.
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3.3.2. Partial dislocation movement
As the grain size is reduced to a value
comparable to the spacing between partial
dislocations, plastic flow occurs as a result of
partial dislocations emitted from grain
boundaries [31]. Since each partial dislocation is
trailed by a stacking fault with energy sf , a

threshold stress th is required to initiate plastic
flow due to partial dislocation movements.
Therefore plastic slip rate due to partial
dislocation movements could be written as:
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In this case, the slip resistance will be
expressed as [21]:
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and the threshold stress due to stacking fault
energy can be calculated from:
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here pb is the Burgers vector of a partial

dislocation. The slip systems of Cu when
complete dislocations are operative, i.e., cdd  ,
are the 12 {111}(110) systems. The slip systems
when partial dislocations become active, i.e.,

cdd  , are identical to the 12{111}(112) twin
systems of fcc materials. Transition from plastic
flow accommodated by complete dislocations to
that by partial dislocations can be specified by:
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and critical grain size cd for this transition can
be calculated as:

sf

p

c 3

Gbb2
d




(19)

3.3.3. Material behavior for grain boundary
phase
For the boundary phase, a quasi-amorphous
behavior was assumed. The quasi-amorphous
behavior of a metal was modeled using an elastic

perfectly plastic curve. In this study, we assume
the strength of the boundary phase to increase up
to an upper limit and then to stay at that level as
the grain size or the strain rate increases. Thus
no dependence on the grain size or on the strain
rate is expected in the behavior of the boundary
phase. The stress–strain relation for amorphous
materials is considered as ideal plastic behavior,
and the assumption of ideal plasticity for the
amorphous state is stated to be physically
reasonable [20].

3.4. Mesh generation, boundary conditions
and loading
Fig. 3 depicts the mesh used for the unit cell. The
mesh consists of about 35000 bilinear two-
dimensional quadrilateral plain strain elements
(CPE4R). Plain strain elements were used in
order to investigate stress concentration in
grains interior and grains boundaries [33]. Study
of mesh dependency showed that the mesh size
is sufficiently small to reach to reasonable
results. In this paper, the UMAT has been
written based on plane strain. Stress on each
node is achieved after running in the Finite
Element Software. The highest stress is captured
at the triple junctions of grains. Regarding the
[34-37], the stress concentration is created at the
junction of two grains because of hardening of
nanocrystalline. Since, the principal mechanism
of deformation of displacement of dislocation is
from one grain to the adjacent grain that leads to
slipping crystal planes on each other and
deformation of crystal.

The unit cell model will be used to predict the
behavior of Cu crystals under tension test in the
next section. The boundary conditions required
to simulate the uniaxial tension are as follows:
as can be observed in figure 4, symmetry
conditions are applied on planes x=0 and y=0.
There is no traction on planes y=a and the
rectangle is subjected to a constant strain rate by
displacing the plane at x=a. In this paper, mesh
has been demonstrated considering grain
boundaries and using implicit solution method.
The results for the required number of elements
and nodes for mesh are achieved after examining
the convergence. If the result in job module is
not convergent, the mesh size must be changed
until the proper results are attained.
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Fig 3. mesh generation of the unit cell model

4.Results and discussions
In Fig. 5, tensile stress–strain curves of nc-Cu
are plotted for seven different strain rates
considered in [3]. Similar to the case of coarse

grained materials, an increase in the strain rate
leads to a harder response of the material but
strain rate sensitivity in this case is much higher
than coarse grained materials.

Fig 4. the boundary conditions applied to simulate the uniaxial tension



M. Tabanfard, Journal of Advanced Materials and Processing, Vol. 4, No. 2, 2016, 63-74 69

Fig 5. Tensile test curves for nc-Cu at various strain rates, due toJiang et al [3]

To model nano-structured polycrystalline Cu,
randomly oriented grains are assumed;
therefore, the material is initially texture free
and isotropic. The values of the parameters
listed in table 1 are known for Cu and are used
for all simulations in this paper.

Using the simulated model, some stress was
obtained for each strain rate which was close to,
but not consistent with, experimental results.
Therefore, in order to use this achieved model
for predicting the real behavior of
nanocrystalline Cu in different strain rates, it is
required to be calibrated. Thus, based on the
properties of each crystal which have been

added in the property section and as the material
is isotopic; among 160 properties which have
been defined for the material, only 6 parameters
have been calibrated which are not a lot
comparing to the whole number of parameters.
Fortunately, the achieved results after
calibration were almost consistent with the
empirical results and they are practical. The rest
of parameters will be obtained from calibration
with experimental data due to Jiang et al [3]. In
these experiments average grain size is 30nm.
The values of these parameters are listed in
Table 2.

Table 1. values of the known parameters for NC-Cu
ValueParameter

135 GPa
40 GPa

Isotropic Elastic parameters [28]:
Isotropic Young modulus  E
Isotropic shear modulus G

0.045
2JmStacking fault energy sf [12].

0.256nmComplete dislocation’s Burgers vector b
0.148 nmPartial dislocation’s Burgers vector pb

16 nmCritical grain size cd (Eq. 19)
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Table 2. Calibrated parameters used in the simulations
17s−1Characteristic strain rate 0
11Stress exponent of slip k
20MPaSlip system strength

0

770MPaSaturation stress s
19000 Nm−1

h
500MPaYield strength of grain boundary

Comparison between simulation results and
experimental data is shown in Fig. 6. The model
predicts stresses very close to experiments for
various strain rates and strains. Figures 7 and 8
show predicted stress and strain distribution.
These figures show while grains interior beer
more stresses, grain boundaries deform more
than grain interiors. As it was seen in the
previous articles [34-37], the triple points are
considered as critical points in nano-crystal and
in these points we see the maximum tension. In
figure. 7. obtained by finite element method
software under plain strain conditions, the

maximum mises tension is seen around this area.
Intensive stress concentration is also observed in
triple junctions. To investigate the effect of
boundary deformation on the behavior of nc-Cu,
a model is constructed without boundaries and
results are compared with the model that
considers boundaries. Fig. 9 shows stress at the
strain rate of 4.17e-1 (1/s) for the mentioned two
models. The model without grain boundary
shows a higher strength and it can be concluded
that by increasing grain boundaries volume
fraction at a constant grain size the strength will
decreases.

Fig 6. Comparison of prediction from the unit cell model with experimental data due to Jiang et al [3]
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Fig 7. Equivalent Misses stress distribution predicted by the unit cell model

To investigate the effect of grain size on nc
materials behavior, the model is used to simulate
tensile tests with different grain sizes. In these
simulations, parameters listed in table 2 are
used. Fig. 10 shows the strength of nc-Cu vs.
inverse of the grain size square root at the strain
rate of 4.17e-3(1/s). The inverse Hall–Petch
effect is well captured by current model. By
considering figures 9 and 10 simultaneously we
can explain what happened in the current model
that can capture the inverse Hall–Petch effect
and deep our understanding about the nc
materials. In a constant grain size increasing the
boundary fraction will decrease the strength as
is suggested in figure 9. If we want to discuss the
role of grain boundary in hardness and yield

stress, it is better to compare the model with
grain boundary and without grain boundary in
terms of quantity. In nano-crystal materials,
until they do not reach to critical level, the grain
boundaries operate as a bridge for passing of the
grains and make nano-crystal harder. This
hardness results in the increase of yield stress in
the grain, therefore yield stress is higher than the
model without boundary.

Without grain boundaries decreasing the grain
size will increase the strength. Strength of a real
material is a result of these two competing
phenomenon. In larger grain sizes (more than
strongest grain size) the second phenomena is
dominant but in smaller the first causes a reveres
behavior.

Fig 8. Equivalent strain distribution predicted by the unit cell model
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Fig 9. Comparison of predicted stress at the strain rate of 4.17e-1 (1/s) for models without
and with boundaries

Fig 10. Inverse Hall-Petch effect predicted by the model at strain rates of 4.17e-3(1/s)

5. Conclusions
In this paper, a unit cell model is constructed to
predict nano-crystalline materials behavior for
various grain sizes and strain rates. In the model,
grain interior plasticity and grain boundaries
deformation are considered. Simulation results
from the model are in good agreement with
tensile test experiments on nc-Cu at different
strain rates and strains. The model can well
capture two important characteristic of nc
materials observed in experiments including
enhanced strain rate sensitivity and inverse Hall-
Petch relation. Results show that while grain
interiors experience more stresses grain
boundaries have more deformation. Also a

severe stress concentration is observed in triple
junctions. The inverse Hall-Petch effect is also
understandable base on the grain boundaries
role.
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