In vitro behavior of silk fibroin-coated calcium magnesium silicate scaffolds
Subject Areas : Finite Element ModelingMasoud Hafezi 1 , Hossein Mohammadi 2 , Ali Nadernezhad 3 , Pardis Fazlali 4 , Noor Azuan Abu Osman 5
1 - Nanotechnology and Advanced Materials Division, Materials and Energy Research Center, Iran
2 - School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
3 - Biomaterials Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Alborz, Iran
4 - Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur
5 - Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur
Keywords:
Abstract :
[1] P.V. Giannoudis, H. Dinopoulos, E. Tsiridis, "Bone substitutes: An update", Injury, Vol. 36 Suppl 3, No. 2005, pp. S20-7.
[2] R. Dimitriou, E. Jones, D. McGonagle, P.V. Giannoudis, "Bone regeneration: Current concepts and future directions", BMC med., Vol. 9, No. 2011, pp. 66.
[3] S. Ni, J. Chang, L. Chou, W. Zhai, "Comparison of osteoblast-like cell responses to calcium silicate and tricalcium phosphate ceramics in vitro", J Biomed. Mater. Res. Part B, Vol. 80B, No. 1, 2007, pp. 174-183.
[4] P. Kasten, R. Luginbühl, M. van Griensven, T. Barkhausen, C. Krettek, M. Bohner, U. Bosch, "Comparison of human bone marrow stromal cells seeded on calcium-deficient hydroxyapatite, β-tricalcium phosphate and demineralized bone matrix", Biomaterials, Vol. 24, No. 15, 2003, pp. 2593-2603.
[5] Y. Zhu, C. Wu, Y. Ramaswamy, E. Kockrick, P. Simon, S. Kaskel, H. Zreiqat, "Preparation, characterization and in vitro bioactivity of mesoporous bioactive glasses (mbgs) scaffolds for bone tissue engineering", Microporous Mesoporous Mater., Vol. 112, No. 1–3, 2008, pp. 494-503.
[6] S.N. Khan, E. Tomin, J.M. Lane, "Clinical applications of bone graft substitutes", The Orthopedic clinics of North America, Vol. 31, No. 3, 2000, pp. 389-98.
[7] K. Rezwan, Q.Z. Chen, J.J. Blaker, A.R. Boccaccini, "Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering", Biomaterials, Vol. 27, No. 18, 2006, pp. 3413-3431.
[8] M. Hafezi-Ardakani, F. Moztarzadeh, M. Rabiee, A.R. Talebi, "Synthesis and characterization of nanocrystalline merwinite (ca3mg(sio4)2) via sol–gel method", Ceram. Int., Vol. 37, No. 1, 2011, pp. 175-180.
[9] M. Hafezi-Ardakani, F. Moztarzadeh, M. Rabiee, A.R. Talebi, M. Abasi-shahni, F. Fesahat, F. Sadeghian, "Sol-gel synthesis and apatite-formation ability of nanostructure merwinite (ca3mgsi2o8) as a novel bioceramic", J. Ceram. Process. Res., Vol. 11, No. 2010, pp. 765-768.
[10] J. Ou, Y. Kang, Z. Huang, X. Chen, J. Wu, R. Xiao, G. Yin, "Preparation and in vitro bioactivity of novel merwinite ceramic", Biomed. mater. (Bristol, England), Vol. 3, No. 1, 2008, pp. 015015.
[11] J. Zhao, Z. Zhang, S. Wang, X. Sun, X. Zhang, J. Chen, D.L. Kaplan, X. Jiang, "Apatite-coated silk fibroin scaffolds to healing mandibular border defects in canines", Bone, Vol. 45, No. 3, pp. 517-527.
[12] H.J. Kim, U.-J. Kim, G.G. Leisk, C. Bayan, I. Georgakoudi, D.L. Kaplan, "Bone regeneration on macroporous aqueous-derived silk 3-d scaffolds", Macromol. Biosci., Vol. 7, No. 5, 2007, pp. 643-655.
[13] C. Wu, Y. Zhang, Y. Zhu, T. Friis, Y. Xiao, "Structure–property relationships of silk-modified mesoporous bioglass scaffolds", Biomaterials, Vol. 31, No. 13, 2010, pp. 3429-3438.
[14] M. Hafezi, M. Abbasi-shahnib, A. Zamanian, S. Hesaraki, "Preparation and characterization of whitlockite-merwinite nanocomposite", J. Ceram. Process. Res., Vol. 14, No. 1, 2013, pp. 96-99.
[15] M. Hafezi, N. Nezafati, A. Nadernezhad, M. Yasaei, A. Zamanian, S. Mobini, "Effect of sintering temperature and cooling rate on the morphology, mechanical behavior and apatite-forming ability of a novel nanostructured magnesium calcium silicate scaffold prepared by a freeze casting method", J. Mater. Sci., Vol. 49, No. 3, 2014, pp. 1297-1305.
[16] U.-J. Kim, J. Park, H. Joo Kim, M. Wada, D.L. Kaplan, "Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin", Biomaterials, Vol. 26, No. 15, 2005, pp. 2775-2785.
[17] I.C. Um, H. Kweon, Y.H. Park, S. Hudson, "Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid", Int. J. Biol. Macromol., Vol. 29, No. 2, 2001, pp. 91-97.
[18] G.M. Nogueira, A.C. Rodas, C.A. Leite, C. Giles, O.Z. Higa, B. Polakiewicz, M.M. Beppu, "Preparation and characterization of ethanol-treated silk fibroin dense membranes for biomaterials application using waste silk fibers as raw material", Bioresour. Technol., Vol. 101, No. 21, 2010, pp. 8446-8451.
[19]
17 |
M. Li, W. Tao, S. Kuga, Y. Nishiyama, "Controlling molecular conformation of regenerated wild silk fibroin by aqueous ethanol treatment", Polym. Adv. Technol., Vol. 14, No. 10, 2003, pp. 694-698.
[20] H.J. Kim, U.-J. Kim, G. Vunjak-Novakovic, B.-H. Min, D.L. Kaplan, "Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells", Biomaterials, Vol. 26, No. 21, 2005, pp. 4442-4452.
[21] S.-M. Lien, L.-Y. Ko, T.-J. Huang, "Effect of pore size on ecm secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering", Acta Biomater., Vol. 5, No. 2, 2009, pp. 670-679.
[22] F. Shang, L. Ming, Z. Zhou, Y. Yu, J. Sun, Y. Ding, Y. Jin, "The effect of licochalcone a on cell-aggregates ecm secretion and osteogenic differentiation during bone formation in metaphyseal defects in ovariectomized rats", Biomaterials, Vol. 35, No. 9, 2014, pp. 2789-2797.
[23] I.D. Xynos, A.J. Edgar, L.D.K. Buttery, L.L. Hench, J.M. Polak, "Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor ii mrna expression and protein synthesis", Biochem. Biophys. Res. Commun., Vol. 276, No. 2, 2000, pp. 461-465.
[24] C. Wu, Y. Ramaswamy, A. Soeparto, H. Zreiqat, "Incorporation of titanium into calcium silicate improved their chemical stability and biological properties", J. Biomed. Mater. Res. Part A, Vol. 86A, No. 2, 2008, pp. 402-410.
[25] A. John, H.K. Varma, T.V. Kumari, "Surface reactivity of calcium phosphate based ceramics in a cell culture system", J. Biomater. Appl., Vol. 18, No. 1, 2003, pp. 63-78.
[26] C. Wu, Y. Ramaswamy, Y. Zhu, R. Zheng, R. Appleyard, A. Howard, H. Zreiqat, "The effect of mesoporous bioactive glass on the physiochemical, biological and drug-release properties of poly(dl-lactide-co-glycolide) films", Biomaterials, Vol. 30, No. 12, 2009, pp. 2199-2208.
[27] Q. Lu, X. Hu, X. Wang, J.A. Kluge, S. Lu, P. Cebe, D.L. Kaplan, "Water-insoluble silk films with silk i structure", Acta Biomater., Vol. 6, No. 4, 2010, pp. 1380-1387.
[28] Q. Lu, X. Wang, S. Lu, M. Li, D.L. Kaplan, H. Zhu, "Nanofibrous architecture of silk fibroin scaffolds prepared with a mild self-assembly process", Biomaterials, Vol. 32, No. 4, 2011, pp. 1059-1067.
[29]
18 |
D.W. Hutmacher, "Scaffolds in tissue engineering bone and cartilage", Biomaterials, Vol. 21, No. 24, 2000, pp. 2529-2543.
[30] S.I. Roohani-Esfahani, Z.F. Lu, J.J. Li, R. Ellis-Behnke, D.L. Kaplan, H. Zreiqat, "Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds", Acta Biomater., Vol. 8, No. 1, 2012, pp. 302-312.