Reduced Biofilm Formation of Pseudomonas Aeruginosa by Silver Modified Iron Oxide
Subject Areas : OtherDavoud kabudanian 1 , Raheleh Safaei javan 2 , Shohreh Zare karizi 3
1 - Department of Biology, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
2 - Department of Biology, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
3 - Department of Biology, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
Keywords:
Abstract :
[1] K. Kalantari, M.B. Ahmad, K. Shameli, and R. Khandanlou, “Synthesis of talc/Fe3O4 magnetic nanocomposites using chemical co-precipitation method,” Int. J. Nanomedicine, Vol. 8, pp. 1817 (1-7), 2013.
[2] Q. Pankhurst, N. Thanh, S. Jones, and J. Dobson, “Progress in applications of magnetic nanoparticles in biomedicine,” J. Phys. D Appl. Phys. Vol. 42, pp. 224001 (1-15), 2009.
[3] S. Hasany, I. Ahmed, J. Rajan, and A. Rehman, “Systematic review of the preparation techniques of iron oxide magnetic nanoparticles,” J. Nanosci. Nanotechnol, Vol.2, PP.148-158, 2012.
[4] A. Pachla, Z. Lendzion-Bieluń, D. Moszyński, A. Markowska-Szczupak, U. Narkiewicz, R.J. Wróbel, and G. Żołnierkiewicz, “Synthesis and antibacterial properties of Fe3O4-Ag nanostructures,” Pol. J. Chem. Technol. Vol. 18, pp. 110-116, 2016.
[5] M.B. Sathyanarayanan, R. Balachandranath, Y.G. Srinivasulu, S.K. Kannaiyan, and G. Subbiahdoss1, “The Effect of Gold and Iron-Oxide Nanoparticles on Biofilm-Forming Pathogens,” ISRN Microbiology, Vol. 2013, pp. 1-5, 2013.
[6] B. Chudasama, A.K. Vala, N. Andhariya, R. Upadhyay, and R. Mehta, “Enhanced antibacterial activity of bifunctional Fe3 O4-Ag core-shell nanostructures,” Nano Res, Vol. 2, pp. 955-965, 2009.
[7] A. Izadi, R. Safaeijavan, E. Moniri, and S.A. Alavi, “Green synthesis of Iron oxide nanoparticles using carum carvi L. and modified with chitosan in order to optimize the anti-cancer drug adsorption.” Int. J. Bio-Inorg. Hybrid Nanomater, Vol. 7, pp. 71-78, 2018.
[8] B. Naeimipour, E. Moniri, A. Vaziri Yazdi, R. Safaeijavan and H. Faraji, “Green biosynthesis of magnetic iron oxide nanoparticles using Mentha longifolia for imatinib mesylate delivery,” IET Nanobiotechnology, Vol. 16, pp. 225–237, 2022.
[9] B.A. Bolto, “Magnetic particle technology for wastewater treatment,” J. Waste Manag. Vol. 10, pp. 11-21, 1990.
[10] A.B. Fuertes and P.A. Tartaj, “facile route for the preparation of superparamagnetic porous carbons,” Chem. Mater. Vol. 18, pp. 1675-1679, 2006.
[11] N. Yang, S. Zhu, D. Zhang and S. Xu,“ Synthesis and properties of magnetic Fe3O4-activated carbon nanocomposite particles for dye removal,” Mater. Lett. Vol. 62, pp. 645-647, 2008.
[12] P.L.Hariani, M. Faizal, R. Ridwan and M. Marsi, “Setiabudidaya D. Synthesis and properties of Fe3O4 nanoparticles by co-precipitation method to removal procion dye,” Int. J. Environ. Sci. Dev. Vol. 4, pp. 336-340, 2013.
[13] S. Azizmohammadi, R. Safaeijavan, A. Heydarinasab ans E. Moniri, “Green Synthesis of Polyvinylpyrrolidone Coated Super‑Paramagnetic Fe3O4 Nanoparticles for Controlled Release of Letrozole: A pH‑Sensitive Drug Delivery System,” J. of Cluster Science, vol. 35, pp. 299-310, 2023.
[14] C. Liu, Z. Zhou, X. Yu, B. Lv, J. Mao, and D. Xiao, “Preparation and characterization of Fe3O4/Ag composite magnetic nanoparticles,” Inorg. Mater, Vol. 44, pp. 291-295, 2008.
[15] T. Osaka, T. Nakanishi, S. Shanmugam, S. Takahama, H. Zhang, “Effect of surface charge of magnetite nanoparticles on their internalization into breast cancer and umbilical vein endothelial cells,” Colloids Surf. B, vol. 71, pp. 325-330, 2009.
[16] M. Mahdavi-Ourtakand, P. Jafari and R. Safaeijavan, “Antibacterial activity of biosynthesized silver nanoparticles from fruit extracts of Bunium persicum Boiss,” Int. J. Bio-Inorg. Hybr. Nanomater, Vol. 6, pp. 245-251, 2017.
[17] Z.A. Kalaki, R. Safaeijavan and M.M. Ortakand, “Biosynthesis of Silver Nanoparticles Using Mentha longifolia (L.) Hudson Leaf Extract and Study its Antibacterial Activity,” Arch. Biol. Sci. Vol. 8, pp. 24-30, 2017.
[18] Z.A. Kalaki, R. SafaeiJavan and H. Faraji, “Procedure optimisation for green synthesis of silver nanoparticles by Taguchi method,” Micro. Nano. Lett. Vol 13, pp. 558-561, 2018.
[19] M.K. Joshi, H.R. Pant, H.J. Kim, J.H. Kim and C.S.Kim , “One-pot synthesis of Ag-iron oxide/reduced graphene oxide nanocomposite via hydrothermal treatment,” Colloids Surf. A Physicochem, Vol. 446, pp.102-108, 2014.
[20] J.W. Costerton, P.S. Stewart and E.P. Greenberg, “Bacterial biofilms: a common cause of persistent infections,” Science, Vol. 284, pp. 1318-1322, 1999.
[21] M. Radzig, V. Nadtochenko, O. Koksharova, J. Kiwi, V. Lipasova ans I. Khmel, “ Antibacterial effects of silver nanoparticles on gram-negative bacteria: influence on the growth and biofilms formation mechanisms of action,” Colloids Surf. B, Vol.102, pp. 300-306, 2013.
[22] M. Schaechter, Encyclopedia of microbiology, Academic Press 2009.
[23] A. Tsutsui, S. Suzuki, K. Yamane, M. Matsui, T. Konda, E. Marui and Y. Arakawa , “Genotypes and infection sites in an outbreak of multidrug-resistant Pseudomonas aeruginosa,” J. Hosp. Infect. Vol. 78, pp. 317-322, 2011.
[24] N. Høiby, T. Bjarnsholt, M. Givskov, S. Molin and O. Ciofu, “Antibiotic resistance of bacterial biofilms,” Int. J. Antimicrob Agents, Vol.35,pp. 322-332, 2010.
[25] L. Ma, M. Conover, H. Lu, M.R. Parsek, K. Bayles and D.J. Wozniak, “Assembly and development of the Pseudomonas aeruginosa biofilm matrix,” PLOS Pathogens, Vol. 5, pp. 1000354 (1-11), 2009.
[26] M. Sadr, A. Heidarinasab, H. Ahmad panahi and R. Safaeijavan, “Production and characterization of biocompatible nano‐carrier based on Fe3O4 for magnetically hydroxychloroquine drug delivery,” Polym. Adv. Technol. Vol. 32, pp. 564-573, 2021.
[27] D. Dozier, S. Palchoudhury and Y. Bao, “Synthesis of iron oxide nanoparticles with biological coatings,” J. Environ. Sci. Health A, Vol. 7, pp. 16-18, 2010.
[28] A. OAU, “Prevention of Proteus mirabilis biofilm by surfactant solution,” Egypt Acad. J. Biol. Sci, Vol.4, pp. 1-8, 2012.
[29] N.K. Pour, D.H. Dusane, P.K. Dhakephalkar, F.R. Zamin, S.S. Zinjarde and B.A. Chopade,” Biofilm formation by Acinetobacter baumannii strains isolated from urinary tract infection and urinary catheters,” FEMS Microbiol Immunol, Vol.62, pp. 328-338, 2011.
[30] S. Stepanović, D. Vuković and V. Hola, “Bonaventura GD, Djukić S, Ćirković I, Ruzicka F. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci,” Apmis, Vol.115, pp. 891-899, 2007.
[31] G. Unsoy, S. Yalcin, R. Khodadust, G. Gunduz and U. Gunduz,” Synthesis optimization and characterization of chitosan-coated iron oxide nanoparticles produced for biomedical applications,” J. Nanopart. Res. Vol. 14, pp. 964, 2012.
[32] M. Baniasadi, M. Tajabadi, M. Nourbakhsh and M. Kamali, “Synthesis and characterization of CORE-shell nanostructure containing super paramagnetic magnetite and poly (Amidoamine)(Pamam) dendrimers,” 2014.
[33] Z. Hasanzadeh, G. Amoabedini, A. Seyfkordi and A. Vaziei, “Magnetic nanoparticles coated with starch environmental review was pragmatic compared to nanoparticles Magnetic,” Biotech. News, Vol. 5, pp. 70-72, 2014.
[34] M.M. Mohammadi and A.A. Abdi, “Study of biofilm formation by pseudomonas aeruginosa using modified microtitre plate and scanning electron microscope,” 2004.
[35] G. Nangmenyi, X. Li, S. Mehrabi, E. Mintz and J. Economy, “Silver-modified iron oxide nanoparticle impregnated fiberglass for disinfection of bacteria and viruses in water,” Mater. Lett. Vol. 65, pp.1191-1193, 2011.
[36] T. Javanbakht, S. Laurent, D. Stanicki and K.J. Wilkinson, “Relating the surface properties of superparamagnetic iron oxide nanoparticles (SPIONs) to their bactericidal effect towards a biofilm of Streptococcus mutans,” PLoS One, Vol. 11, pp. 0154445 (1-13), 2016.
[37] D.C. Kaur and S.V. Wankhede, "A study of Biofilm formation & Metallo-β-Lactamases in Pseudomonas aeruginosa in a tertiary care rural hospital,” Int. j. sci. res. publ. Vol. 3, pp. (1-7) 2013.
[38] K. Smith and I.S. Hunter, "Efficacy of common hospital biocides with biofilms of multi-drug resistant clinical isolates, ” J. Med. Microbiol. Vol. 57, pp. 966-973, 2008.