Reduced Biofilm Formation of Pseudomonas Aeruginosa by Silver Modified Iron Oxide
الموضوعات :Davoud kabudanian 1 , Raheleh Safaei javan 2 , Shohreh Zare karizi 3
1 - Department of Biology, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
2 - Department of Biology, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
3 - Department of Biology, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
الکلمات المفتاحية: Biofilm, Composite, Iron oxide nanoparticles, P. aeruginosa, Ag-Fe3O4 nanoparticles,
ملخص المقالة :
Objectives and Background: Pseudomonas aeruginosa (P. aeruginosa) is a nosocomial opportunistic pathogen. Considering the importance of biofilm in pathogenicity and resistance of these bacteria, efforts should be made to find new antibacterial compounds.Methods: The Fe3O4 nanoparticles were synthesized by the co-precipitation method and were modified by the AgNO3 reductive solution to investigate influencing of Ag-Fe3O4 nanoparticles on biofilm formation of P. aeruginosa. The synthesized nanoparticles properties were determined by FESEM, DLS, FTIR, XRD and Zeta potential tests. Results: FESEM and DLS revealed the cubic and smooth structure with average size of 44.36 nm. XRD analyzes confirmed the presence of magnetite core. FTIR spectrum determined the existence of silver plating on the magnetic surface. The Zeta potential results indicated that the magnetic nanoparticle’s surface net charge was 24.4 and the surface net charge for silver modified nanoparticles was -28.3. Finally, after separating 40 isolates of P. aeruginosa among 82 clinical isolates as strong biofilm producers, then the inhibitory effect of synthesised Ag- Fe3O4 nanoparticles on the formation of biofilms was studied using the broth micro-dilution method.Conclusions: Accordingly, it was proved that Ag-Fe3O4 nanoparticles can be used to treat biofilm infections and were introduced as the new antimicrobial agents
[1] K. Kalantari, M.B. Ahmad, K. Shameli, and R. Khandanlou, “Synthesis of talc/Fe3O4 magnetic nanocomposites using chemical co-precipitation method,” Int. J. Nanomedicine, Vol. 8, pp. 1817 (1-7), 2013.
[2] Q. Pankhurst, N. Thanh, S. Jones, and J. Dobson, “Progress in applications of magnetic nanoparticles in biomedicine,” J. Phys. D Appl. Phys. Vol. 42, pp. 224001 (1-15), 2009.
[3] S. Hasany, I. Ahmed, J. Rajan, and A. Rehman, “Systematic review of the preparation techniques of iron oxide magnetic nanoparticles,” J. Nanosci. Nanotechnol, Vol.2, PP.148-158, 2012.
[4] A. Pachla, Z. Lendzion-Bieluń, D. Moszyński, A. Markowska-Szczupak, U. Narkiewicz, R.J. Wróbel, and G. Żołnierkiewicz, “Synthesis and antibacterial properties of Fe3O4-Ag nanostructures,” Pol. J. Chem. Technol. Vol. 18, pp. 110-116, 2016.
[5] M.B. Sathyanarayanan, R. Balachandranath, Y.G. Srinivasulu, S.K. Kannaiyan, and G. Subbiahdoss1, “The Effect of Gold and Iron-Oxide Nanoparticles on Biofilm-Forming Pathogens,” ISRN Microbiology, Vol. 2013, pp. 1-5, 2013.
[6] B. Chudasama, A.K. Vala, N. Andhariya, R. Upadhyay, and R. Mehta, “Enhanced antibacterial activity of bifunctional Fe3 O4-Ag core-shell nanostructures,” Nano Res, Vol. 2, pp. 955-965, 2009.
[7] A. Izadi, R. Safaeijavan, E. Moniri, and S.A. Alavi, “Green synthesis of Iron oxide nanoparticles using carum carvi L. and modified with chitosan in order to optimize the anti-cancer drug adsorption.” Int. J. Bio-Inorg. Hybrid Nanomater, Vol. 7, pp. 71-78, 2018.
[8] B. Naeimipour, E. Moniri, A. Vaziri Yazdi, R. Safaeijavan and H. Faraji, “Green biosynthesis of magnetic iron oxide nanoparticles using Mentha longifolia for imatinib mesylate delivery,” IET Nanobiotechnology, Vol. 16, pp. 225–237, 2022.
[9] B.A. Bolto, “Magnetic particle technology for wastewater treatment,” J. Waste Manag. Vol. 10, pp. 11-21, 1990.
[10] A.B. Fuertes and P.A. Tartaj, “facile route for the preparation of superparamagnetic porous carbons,” Chem. Mater. Vol. 18, pp. 1675-1679, 2006.
[11] N. Yang, S. Zhu, D. Zhang and S. Xu,“ Synthesis and properties of magnetic Fe3O4-activated carbon nanocomposite particles for dye removal,” Mater. Lett. Vol. 62, pp. 645-647, 2008.
[12] P.L.Hariani, M. Faizal, R. Ridwan and M. Marsi, “Setiabudidaya D. Synthesis and properties of Fe3O4 nanoparticles by co-precipitation method to removal procion dye,” Int. J. Environ. Sci. Dev. Vol. 4, pp. 336-340, 2013.
[13] S. Azizmohammadi, R. Safaeijavan, A. Heydarinasab ans E. Moniri, “Green Synthesis of Polyvinylpyrrolidone Coated Super‑Paramagnetic Fe3O4 Nanoparticles for Controlled Release of Letrozole: A pH‑Sensitive Drug Delivery System,” J. of Cluster Science, vol. 35, pp. 299-310, 2023.
[14] C. Liu, Z. Zhou, X. Yu, B. Lv, J. Mao, and D. Xiao, “Preparation and characterization of Fe3O4/Ag composite magnetic nanoparticles,” Inorg. Mater, Vol. 44, pp. 291-295, 2008.
[15] T. Osaka, T. Nakanishi, S. Shanmugam, S. Takahama, H. Zhang, “Effect of surface charge of magnetite nanoparticles on their internalization into breast cancer and umbilical vein endothelial cells,” Colloids Surf. B, vol. 71, pp. 325-330, 2009.
[16] M. Mahdavi-Ourtakand, P. Jafari and R. Safaeijavan, “Antibacterial activity of biosynthesized silver nanoparticles from fruit extracts of Bunium persicum Boiss,” Int. J. Bio-Inorg. Hybr. Nanomater, Vol. 6, pp. 245-251, 2017.
[17] Z.A. Kalaki, R. Safaeijavan and M.M. Ortakand, “Biosynthesis of Silver Nanoparticles Using Mentha longifolia (L.) Hudson Leaf Extract and Study its Antibacterial Activity,” Arch. Biol. Sci. Vol. 8, pp. 24-30, 2017.
[18] Z.A. Kalaki, R. SafaeiJavan and H. Faraji, “Procedure optimisation for green synthesis of silver nanoparticles by Taguchi method,” Micro. Nano. Lett. Vol 13, pp. 558-561, 2018.
[19] M.K. Joshi, H.R. Pant, H.J. Kim, J.H. Kim and C.S.Kim , “One-pot synthesis of Ag-iron oxide/reduced graphene oxide nanocomposite via hydrothermal treatment,” Colloids Surf. A Physicochem, Vol. 446, pp.102-108, 2014.
[20] J.W. Costerton, P.S. Stewart and E.P. Greenberg, “Bacterial biofilms: a common cause of persistent infections,” Science, Vol. 284, pp. 1318-1322, 1999.
[21] M. Radzig, V. Nadtochenko, O. Koksharova, J. Kiwi, V. Lipasova ans I. Khmel, “ Antibacterial effects of silver nanoparticles on gram-negative bacteria: influence on the growth and biofilms formation mechanisms of action,” Colloids Surf. B, Vol.102, pp. 300-306, 2013.
[22] M. Schaechter, Encyclopedia of microbiology, Academic Press 2009.
[23] A. Tsutsui, S. Suzuki, K. Yamane, M. Matsui, T. Konda, E. Marui and Y. Arakawa , “Genotypes and infection sites in an outbreak of multidrug-resistant Pseudomonas aeruginosa,” J. Hosp. Infect. Vol. 78, pp. 317-322, 2011.
[24] N. Høiby, T. Bjarnsholt, M. Givskov, S. Molin and O. Ciofu, “Antibiotic resistance of bacterial biofilms,” Int. J. Antimicrob Agents, Vol.35,pp. 322-332, 2010.
[25] L. Ma, M. Conover, H. Lu, M.R. Parsek, K. Bayles and D.J. Wozniak, “Assembly and development of the Pseudomonas aeruginosa biofilm matrix,” PLOS Pathogens, Vol. 5, pp. 1000354 (1-11), 2009.
[26] M. Sadr, A. Heidarinasab, H. Ahmad panahi and R. Safaeijavan, “Production and characterization of biocompatible nano‐carrier based on Fe3O4 for magnetically hydroxychloroquine drug delivery,” Polym. Adv. Technol. Vol. 32, pp. 564-573, 2021.
[27] D. Dozier, S. Palchoudhury and Y. Bao, “Synthesis of iron oxide nanoparticles with biological coatings,” J. Environ. Sci. Health A, Vol. 7, pp. 16-18, 2010.
[28] A. OAU, “Prevention of Proteus mirabilis biofilm by surfactant solution,” Egypt Acad. J. Biol. Sci, Vol.4, pp. 1-8, 2012.
[29] N.K. Pour, D.H. Dusane, P.K. Dhakephalkar, F.R. Zamin, S.S. Zinjarde and B.A. Chopade,” Biofilm formation by Acinetobacter baumannii strains isolated from urinary tract infection and urinary catheters,” FEMS Microbiol Immunol, Vol.62, pp. 328-338, 2011.
[30] S. Stepanović, D. Vuković and V. Hola, “Bonaventura GD, Djukić S, Ćirković I, Ruzicka F. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci,” Apmis, Vol.115, pp. 891-899, 2007.
[31] G. Unsoy, S. Yalcin, R. Khodadust, G. Gunduz and U. Gunduz,” Synthesis optimization and characterization of chitosan-coated iron oxide nanoparticles produced for biomedical applications,” J. Nanopart. Res. Vol. 14, pp. 964, 2012.
[32] M. Baniasadi, M. Tajabadi, M. Nourbakhsh and M. Kamali, “Synthesis and characterization of CORE-shell nanostructure containing super paramagnetic magnetite and poly (Amidoamine)(Pamam) dendrimers,” 2014.
[33] Z. Hasanzadeh, G. Amoabedini, A. Seyfkordi and A. Vaziei, “Magnetic nanoparticles coated with starch environmental review was pragmatic compared to nanoparticles Magnetic,” Biotech. News, Vol. 5, pp. 70-72, 2014.
[34] M.M. Mohammadi and A.A. Abdi, “Study of biofilm formation by pseudomonas aeruginosa using modified microtitre plate and scanning electron microscope,” 2004.
[35] G. Nangmenyi, X. Li, S. Mehrabi, E. Mintz and J. Economy, “Silver-modified iron oxide nanoparticle impregnated fiberglass for disinfection of bacteria and viruses in water,” Mater. Lett. Vol. 65, pp.1191-1193, 2011.
[36] T. Javanbakht, S. Laurent, D. Stanicki and K.J. Wilkinson, “Relating the surface properties of superparamagnetic iron oxide nanoparticles (SPIONs) to their bactericidal effect towards a biofilm of Streptococcus mutans,” PLoS One, Vol. 11, pp. 0154445 (1-13), 2016.
[37] D.C. Kaur and S.V. Wankhede, "A study of Biofilm formation & Metallo-β-Lactamases in Pseudomonas aeruginosa in a tertiary care rural hospital,” Int. j. sci. res. publ. Vol. 3, pp. (1-7) 2013.
[38] K. Smith and I.S. Hunter, "Efficacy of common hospital biocides with biofilms of multi-drug resistant clinical isolates, ” J. Med. Microbiol. Vol. 57, pp. 966-973, 2008.