Multi-objective Optimization of Turning of Titanium Alloy Under Minimum Quantity Lubrication
Subject Areas : TectonostratigraphySatish Chinchanikar 1 , Jitendra Katiyar 2 , Omkar Manav 3
1 - Department of Mechanical Engineering, Vishwakarma Institute of Information Technology, India
2 - Department of Mechanical Engineering, SRM Institute of Science and Technology, Chennai, India.
3 - Department of Mechanical Engineering, Vishwakarma Institute of Information Technology, India.
Keywords:
Abstract :
Aitken, R. J., Chaudhry, M. Q., Boxall, A. B. A., & Hull, M. (2006). Manufacture and use of nanomaterials: current status in the UK and global trends. Occupational medicine, 56(5), 300-306.
Anandan, V., Babu, M. N., Muthukrishnan, N., & Babu, M. D. (2020). Performance of silver nanofluids with minimum quantity lubrication in turning on titanium: a phase to green manufacturing. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(4), 1-15.
Asadi, A., Saidi-Mehrabad, M., & Fathi Aghdam, F. (2019). A Two-Dimensional Warranty Model With Consideration Of Customer And Manufacturer Objectives Solved With Non-Dominated Sorting Genetic Algorithm. Journal Of Optimization In Industrial Engineering, 12(1), 15-22.
Boyer, R. R., & Briggs, R. D. (2005). The use of β titanium alloys in the aerospace industry. Journal of Materials Engineering and Performance, 14(6), 681-685.
Chinchanikar, S., Kore, S. S., & Hujare, P. (2021). A review on nanofluids in minimum quantity lubrication machining. Journal of Manufacturing Processes, 68, 56-70.
Chinchanikar, S., Bawangaonwala, H. M., Bokade, S., & Garode, S. (2020). Investigations on the Machining Performance using Solid Lubricant Mixed with Varying Proportions in Vegetable Oil during Hard Turning. In IOP Conference Series: Materials Science and Engineering (Vol. 810, No. 1, p. 012044). IOP Publishing.
Chinchanikar, S., & Choudhury, S. K. (2015). Machining of hardened steel—experimental investigations, performance modeling and cooling techniques: a review. International Journal of Machine Tools and Manufacture, 89, 95-109.
Chinchanikar, S., & Choudhury, S. K. (2013). Effect of work material hardness and cutting parameters on performance of coated carbide tool when turning hardened steel: An optimization approach. Measurement, 46(4), 1572-1584.
Das, S. K., Choi, S. U., & Patel, H. E. (2006). Heat transfer in nanofluids—a review. Heat transfer engineering, 27(10), 3-19.
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197.
Dhar, N. R., Ahmed, M. T., & Islam, S. (2007). An experimental investigation on effect of minimum quantity lubrication in machining AISI 1040 steel. International Journal of Machine Tools and Manufacture, 47(5), 748-753.
Dhar, N. R., Kamruzzaman, M., & Ahmed, M. (2006). Effect of minimum quantity lubrication (MQL) on tool wear and surface roughness in turning AISI-4340 steel. Journal of materials processing technology, 172(2), 299-304.
Gaurav, G., Sharma, A., Dangayach, G. S., & Meena, M. L. (2020). Assessment of jojoba as a pure and nano-fluid base oil in minimum quantity lubrication (MQL) hard-turning of Ti–6Al–4V: A step towards sustainable machining. Journal of Cleaner Production, 272, 122553.
Gupta, M. K., Sood, P. K., & Sharma, V. S. (2016). Optimization of machining parameters and cutting fluids during nano-fluid based minimum quantity lubrication turning of titanium alloy by using evolutionary techniques. Journal of Cleaner Production, 135, 1276-1288.
Hegab, H., Umer, U., Deiab, I., & Kishawy, H. (2018). Performance evaluation of Ti-6Al-4V machining using nano-cutting fluids under minimum quantity lubrication. International Journal of Advanced Manufacturing Technology, 95, 4229–4241.
Jamil, M., He, N., Li, L., & Khan, A. M. (2020). Clean manufacturing of Ti-6Al-4V under CO2-snow and hybrid nanofluids. Procedia Manufacturing, 48, 131-140.
Jozić, S., Bajić, D., & Celent, L. (2015). Application of compressed cold air cooling: achieving multiple performance characteristics in end milling process. Journal of Cleaner Production, 100, 325-332.
Kalyon, A., Günay, M., & Özyürek, D. (2018). Application of grey relational analysis based on Taguchi method for optimizing machining parameters in hard turning of high chrome cast iron. Advances in Manufacturing, 6(4), 419-429.
Kang, M. C., Kim, K. H., Shin, S. H., Jang, S. H., Park, J. H., & Kim, C. (2008). Effect of the minimum quantity lubrication in high-speed end-milling of AISI D2 cold-worked die steel (62 HRC) by coated carbide tools. Surface and Coatings Technology, 202(22-23), 5621-5624.
Katta, S., & Chaitanya, R. S. (2018). Experimental Investigations of Graphene Nanoparticle-Based Cutting Fluid during Turning of Titanium Alloy (Grade 5) with Minimum Quantity Lubrication. Journal of Advanced Research in Manufacturing, Material Science & Metallurgical Engineering, 5(1&2), 22-30.
Kishawy, H. A., Dumitrescu, M., Ng, E. G., & Elbestawi, M. A. (2005). Effect of coolant strategy on tool performance, chip morphology and surface quality during high-speed machining of A356 aluminum alloy. International Journal of Machine Tools and Manufacture, 45(2), 219-227.
Khakzar Bafruei, M., Khatibi, S., & Rahmani, M. (2018). A Bi-Objective Airport Gate Scheduling with Controllable Processing Times Using Harmony Search and NSGA-II Algorithms. Journal of Optimization in Industrial Engineering, 11(1), 77-90.
Kosaraju, S., & Anne, V. G. (2013). Optimal machining conditions for turning Ti-6Al-4V using response surface methodology. Advances in Manufacturing, 1(4), 329-339.
Krishna, P. V., Srikant, R. R., & Rao, D. N. (2010). Experimental investigation on the performance of nanoboric acid suspensions in SAE-40 and coconut oil during turning of AISI 1040 steel. International Journal of machine Tools and manufacture, 50(10), 911-916.
Kumar, R., Sahoo, A. K., Mishra, P. C., & Das, R. K. (2018). Comparative study on machinability improvement in hard turning using coated and uncoated carbide inserts: part II modeling, multi-response optimization, tool life, and economic aspects. Advances in Manufacturing, 6(2), 155-175.
Kumar, T. A., Pradyumna, G., & Jahar, S. (2012). Investigation of thermal conductivity and viscosity of nanofluids. Journal of environmental research and development, 7(2).
Kumar, C. R. V., & Ramamoorthy, B. (2007). Performance of coated tools during hard turning under minimum fluid application. Journal of Materials Processing Technology, 185(1-3), 210-216.
Leppert, T. (2011). Effect of cooling and lubrication conditions on surface topography and turning process of C45 steel. International Journal of Machine Tools and Manufacture, 51(2), 120-126.
Li, N., Chen, Y. J., & Kong, D. D. (2019). Multi-response optimization of Ti-6Al-4V turning operations using Taguchi-based grey relational analysis coupled with kernel principal component analysis. Advances in Manufacturing, 7(2), 142-154.
Lin, J. L., & Tarng, Y. S. (1998). Optimization of the multi-response process by the Taguchi method with grey relational analysis. Journal of Grey system, 4(4), 355-370.
Liu, Z., An, Q., Xu, J., Chen, M., & Han, S. (2013). Wear performance of (nc-AlTiN)/(a-Si3N4) coating and (nc-AlCrN)/(a-Si3N4) coating in high-speed machining of titanium alloys under dry and minimum quantity lubrication (MQL) conditions. Wear, 305(1-2), 249-259.
Maadanpour Safari, F., Etebari, F., & Pourghader Chobar, A. (2021). Modelling and optimization of a tri-objective Transportation-Location-Routing Problem considering route reliability: using MOGWO, MOPSO, MOWCA and NSGA-II. Journal of Optimization in Industrial Engineering, 14(2), 99-114.
Maruda, R. W., Krolczyk, G. M., Michalski, M., Nieslony, P., & Wojciechowski, S. (2017). Structural and microhardness changes after turning of the AISI 1045 steel for minimum quantity cooling lubrication. Journal of Materials Engineering and Performance, 26(1), 431-438.
Rahmati, B., Sarhan, A. A., & Sayuti, M. (2014). Investigating the optimum molybdenum disulfide (MoS 2) nanolubrication parameters in CNC milling of AL6061-T6 alloy. The International Journal of Advanced Manufacturing Technology, 70(5-8), 1143-1155.
Rao, R. V. (2011). Overview. In Advanced Modeling and Optimization of Manufacturing Processes (pp. 1-54). Springer, London.
Sharma, A. K., Katiyar, J. K., Bhaumik, S., & Roy, S. (2019). Influence of alumina/MWCNT hybrid nanoparticle additives on tribological properties of lubricants in turning operations. Friction, 7(2), 6.
Sharma, A. K., Singh, R. K., Dixit, A. R., & Tiwari, A. K. (2017). Novel uses of alumina-MoS2 hybrid nanoparticle enriched cutting fluid in hard turning of AISI 304 steel. Journal of Manufacturing Processes, 30, 467-482.
Sharma, A. K., Tiwari, A. K., & Dixit, A. R. (2015). Progress of nanofluid application in machining: a review. Materials and Manufacturing Processes, 30(7), 813-828.
Singh, V., Sharma, A. K., Sahu, R. K., & Katiyar, J. K. (2021). Novel application of graphite-talc hybrid nanoparticle enriched cutting fluid in turning operation. Journal of Manufacturing Processes, 62, 378-387.
Varote, N., & Joshi, S. S. (2017). Microstructural analysis of machined surface integrity in drilling a titanium alloy. Journal of Materials Engineering and Performance, 26(9), 4391-4401.