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Abstract 

In the present study, the machining performance of titanium grade-1 alloy is evaluated in terms of resultant cutting force, machined surface 

roughness, and material removal rate (MRR) through a multi-objective optimization approach. Turning experiments were performed with 

CVD-coated TiCN-Al2O3 carbide inserts using vegetable oil-based nanofluid under minimum quantity lubrication. The nanofluid was 

prepared using coconut oil as a base fluid mixed with boron nitride (hBN) nanoparticles. Experiments were performed by varying the 

cutting speed, feed, depth of cut, and nanoparticles concentration in a base fluid. The Desirability Function Approach (DFA), a Technique 

for Order of Preference by Similarity to Ideal Solution (TOPSIS), Grey Relational Analysis (GRA), and Non-dominated Sorting Genetic 

Algorithm (NSGA-II) are used to optimize the machining performance. The optimized solutions from different optimization techniques are 

observed in better agreement. The results show optimum performance at the higher cutting speed, higher depth of cut, lower feed, and 

lower concentration of nanoparticles. Lowest values for resultant force and surface roughness of 387 N and 0.47 µm, respectively, and 

maximum MRR of 9375 mm3/min could be obtained using the cutting speed, feed, depth of cut, and nanoparticles concentration of 125 

m/min, 0.1 mm/rev, 0.75 mm, and 0.3%, respectively. However, little compromising the surface roughness to a higher value of 0.83 µm 

with almost the same resultant force, the higher MRR of 15000 mm3/min could be obtained using higher cutting parameters. It has been 

observed that the resultant force and surface roughness are significantly affected by the depth of cut and feed, respectively. However, the 

concentration of nanoparticles has been observed to have a lower prominent effect on the surface roughness and resultant force. 
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1. Introduction 

Titanium machining is one of the ever-growing problems 

due to its low thermal conductivity, modulus of elasticity, 

and work hardening characteristics. Titanium grade-1 

alloy has a wide range of applications, especially in the 

marine and aerospace fields. However, achieving 

sustainable machining of these alloys considering 

economic, technical, and environmental requirements is 

widely researched, being difficult-to-cut material. The 

selection of process parameters to obtain optimum 

machining efficiency is very crucial for machining 

titanium alloys.  

In machining, plastic deformation of the workpiece 

material at a higher strain rate causes heat generation at 

the cutting zone. This generated heat has a detrimental 

effect on the overall machining performance. The cutting 

fluid carries away the generated heat and assist in 

improving the machining economics. However, the 

increasing environmental and health regulations put some 

limits on the use of conventional cutting fluids. Further, 

the cost associated with the cutting fluids and their 

disposal after use add around 16-20% to the total 

production cost. Therefore, researchers have attempted 

machining using minimum quantity lubrication (MQL) 

(Dhar et al., 2007). 

MQL is considered as a trade-off between the benefits and 

drawbacks of dry cutting and machining with ample 

soluble oil. MQL imparted lubricating and cooling effects 

that enhanced the tool life against machining under dry 

conditions (Liu et al., 2013). A group of researchers 

(Kishawy et al., 2005; Sharma et al., 2019; Maruda et al., 

2017; Chinchanikar and Choudhury, 2015) observed that 

the machining under MQL lowered the cutting forces and 

improved the surface finish and tool life. Attempts have 

also been made to optimize MQL parameters (pressure, 

flow rate, type of fluid, stand-off distance, etc.) for better 

machining performance against machining with 

conventional cutting fluid (Leppert, 2011).  

However, contradictory results are reported about MQL 

machining performance at high-speed machining (Dhar et 

al., 2006; Kang et al., 2008; Kumar and Ramamoorthy, 

2007). It is reported ineffective cooling at high-speed 

machining as coolant finds it difficult to reach the cutting 

zone. On the other hand, researchers observed better 

machining performance with synthetic and vegetable oils 

mixed with macro/micro-sized solid particles. This mixed 

type of cutting fluid provided better heat transfer capacity 

and better lubricity (Chinchanikar et al., 2020). However, 
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clogging and stability issues of micro-sized particles are 

reported in MQL machining (Das et al., 2006). 

From the last decade, nanoparticle-assisted MQL 

machining made revolutionary changes in manufacturing 

due to its unique and enhanced properties (Aitken et al., 

2006). Researchers have attempted MQL machining using 

a cutting fluid blended with the different nanoparticles. 

Thermophysical, tribological, and wetting characteristics 

of cutting fluids are improved by the addition of 

nanoparticles in base oil (Kumar et al., 2012; 

Chinchanikar et al., 2021). Krishna et al. (2010) 

investigated the temperature at the cutting zone, flank 

wear, and machined surface temperature during 

machining using nanofluids. The nanofluids were 

obtained by mixing solid boric acid nanoparticles with 

varying concentrations in the coconut oil and SAE 40 oil, 

respectively. Their study observed lower tool wear, lower 

temperature, and better surface finish due to the formation 

of interfacial film at the work-tool interface.  

Sharma et al. (2015) reviewed nanoparticles blended 

cutting fluid. Their study found enhancement in the heat 

removal capacity from the cutting zone and improved tool 

life with the blended cutting fluids. A group of 

researchers prepared the nanofluid by mixing MoS2 in a 

base oil for enhancing the tribological performance and 

hence the machining performance (Rahmati et al., 2014; 

Sharma et al., 2017). Gupta et al. (2016) investigated the 

effect of Aluminium oxide (Al2O3), Molybdenum 

disulphide (MoS2), and graphite nanofluids on the 

machining of widely used titanium grade-2 alloy. Their 

study observed that graphite nanofluids significantly 

enhanced the machining performance by reducing the 

cutting force, temperature, tool wear, and surface 

roughness compared to the other nanofluids. 

Katta et al. (2018) investigated the machining 

performance of Ti-6Al-4V alloy with soya bean oil mixed 

with graphene nanoparticles. They found a reduction in 

flank wear. Hegab et al. (2018) found that the Ecolubric 

E200 based multi-walled carbon nanotube (MWCNT) 

type nanofluid reduced the tool wear and power 

consumption by 45% and 11.5%, respectively while 

machining Ti-6Al-4V under MQL. Anandan et al. (2020) 

also observed a reduction in flank wear, surface 

roughness, cutting temperature, cutting forces by 60%, 

26%, 34%, and 18%, respectively, while using silver 

nanofluid in turning titanium grade-2 alloy compared to 

flood lubrication.  

Gaurav et al. (2020) evaluated the lubrication 

performance of MoS2 nanoparticles in two different types 

of oils, jojoba (vegetable) and LRT30 (mineral oil), 

during MQL turning of Ti-6Al-4V alloy. They found that 

the jojoba-based MoS2 nanofluid with MQL significantly 

enhances the machining performance compared to 

mineral oil-based cutting fluids.  

Jamil et al. (2020) performed machining of Ti-6Al-4V 

using blaser-distilled water-based Copper oxide- multi-

walled carbon nanotube (CuO-MWCNT) hybrid 

nanofluid under MQL. Their study observed clean 

machining with hybrid nanofluid as compared to carbon 

dioxide (CO2) snow with a significant reduction in tool 

wear, power, surface roughness, and cutting temperature. 

Singh et al. (2021) performed the MQL assisted 

machining of titanium grade-5 alloy using coconut based-

oil with graphite/talc nanoparticles. Their study observed 

that the concentration of nanoparticles prominently affects 

machining performance.  

Kosaraju and Anne (2013) investigated the effects of 

process parameters such as speed, feed, depth of cut and 

back rake angle on cutting force and surface roughness 

during turning of Ti-6Al-4V using PVD-TiAlN coated 

carbide inserts. Their experimental study observed an 

increase in the cutting force with the increase in depth of 

cut and feed and a decrease in the cutting force with the 

increase in speed and back rake angle. However, surface 

roughness was observed as decreasing with the increase in 

speed and back rake angle and increased with the depth of 

cut and speed.  

A group of researchers attempted optimization studies 

using different techniques (Chinchanikar and Choudhury, 

2013; Kalyon et al., 2018; Kumar et al., 2018). Li et al. 

(2019) optimized the type of insert, feed rate, and depth of 

cut during turning of Ti-6Al-4V. The major performance 

indexes were radial thrust, cutting power, and coefficient 

of friction at the chip-tool interface. Grey Relational 

Analysis (GRA) with kernel principal component analysis 

(KPCA) was used to obtain the kernel grey relational 

grade (KGRG) and optimal process parameters. Their 

experimental study found that the depth of cut had the 

most significant effect, followed by the feed rate and type 

of insert. Their study observed better agreement between 

the experimental and predicted results with the hybrid 

GRA and principal component analysis (PCA) method 

than the traditional GRA technique. 

From the literature review, it has been observed that the 

researchers mostly attempted machining using graphite, 

graphene, MWCNT, MoS2, etc., nanoparticles mixed with 

vegetable-based, mineral-based oils, or water-based oils. 

However, nanofluid becomes black with the addition of 

these nanoparticles, which is mostly not preferred in 

manufacturing (Boyer and Briggs, 2005). Hence, attempts 

are being made to explore the most efficient nanofluids 

under MQL for the machining of titanium alloys. The 

preferred nanofluids must address the higher chemical 

affinity of the titanium alloys with other materials and low 

thermal conductivity (Varote and Joshi, 2017).  

Continuing efforts are being made to develop nanofluids 

that are visible in white colour and eliminate the adhesion 

between the tool and the workpiece. Further, it has been 

observed that very few studies reported on the 

investigation and optimization of the machining 

performance of titanium grade-1 alloy using vegetable-

based nanofluid under MQL. Mostly, coconut oil and 

sunflower oil are mostly preferred vegetable oils while 

machining of high temperature alloys. However, almost 

no studies made using coconut oil-based hexagonal boron 

nitride (hBN) nanofluid while machining of titanium 

alloy. 

With this view, in the present study, the machining 

performance of titanium grade-1 alloy was evaluated 

using vegetable oil-based nanofluid under minimum 
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quantity lubrication. The turning performance in terms of 

resultant cutting force, machined surface roughness, and 

material removal rate was evaluated using a multi-

objective optimization approach. The nanofluid was 

prepared using coconut oil as a base fluid mixed with 

hexagonal boron nitride (hBN) nanoparticles. 

Experiments were performed by varying the cutting 

speed, feed, depth of cut, and nanoparticles concentration 

in a base fluid. Empirical equations are developed for 

understanding the effect of process parameters on 

machining performance. The machining performance is 

optimized using the Desirability Function Approach 

(DFA), a Technique for Order of Preference by Similarity 

to Ideal Solution (TOPSIS), Grey Relational Analysis 

(GRA), and a Non-dominated Sorting Genetic Algorithm 

(NSGA-II) to confirm the accuracy of the results. Finally, 

conclusions with the scope for future work are discussed.   

2. Experimental Design 

Titanium grade-1 alloy is the first of four commercially 

pure titanium grades. It has excellent corrosion resistance 

and high impact toughness. Grade-1 is the material of 

choice for chemical processing, chlorate manufacturing, 

dimensionally stable anodes, medical industry, marine 

industry, automotive parts, airframe structure, deep 

drawing applications, and heat exchanger parts. It consists 

of 0.20% of Fe and almost 99% of titanium and all other 

composites. The chemical composition, physical 

properties, and mechanical properties of this alloy are 

shown in Tables 1 and 2, respectively. 

 
Table 1. 

 Composition of titanium alloy (Grade-1) 

Elements Fe O2 C N2 H2 Residuals Ti 

% Content 0.20 0.18 0.08 0.03 0.015 0.10-0.40 Balance 

 
Table 2.  

Mechanical and physical properties of grade-1 titanium alloy 

Density 4.51 g/cm3 

Mean coefficient of thermal expansion 8.6 μm/m °C (20 – 100 

°C) 
Thermal conductivity 16 (W/m K) 

Modulus of elasticity 105 – 120 kN/mm² 

Melting point 1670° C 

Tensile strength (MPa) 240 

Yield strength, 0.2% offset (MPa) 170 

Elongation (%) 24 

Reduction of area (%) 30 

 

Turning operations were performed at varying cutting 

speeds, feed, depth of cut, and concentration of hBN 

nanoparticles in the base fluid. The workpiece used was 

titanium grade-1 with a diameter of 25 mm and a length 

of 305 mm. A left-hand side cutting tool holder of size 20 

by 20 mm with a carbide insert was used. The cutting 

insert used was a 6-point cutting tool (Triangular 

geometry). The CVD-coated TiCN-Al2O3 carbide inserts 

with the ISO designation as TNMG 160404EN-TF was 

used referring to the manufacturer’s recommendation for 

machining the titanium grade-1. The tool holder used with 

the ISO designation as DTJNL2020K16. The tool holder 

and cutting insert geometries used in the present study are 

shown in Figures 1(a) and (b), respectively. A multilayer 

coating used was having an average thickness of 18.5 μm, 

a grain size of 1-2 μm, and a hardness of 1550 HV. The 

specifications of the tool holder and a cutting insert used 

in the present study are depicted in Tables 3 and 4, 

respectively. 

 

 

(a) 

 

(b) 
Fig. 1. (a) Tool holder geometry, (b) Cutting insert geometry 

 
Table 3.  
Specifications of tool holder  

h (mm) Type h1 (mm) b (mm) l1 (mm) l2 (mm) f (mm) 

31.75 DTJNL2020K16 

left-handed 

31.75 31.75 152.4 31.75 38.1 

 
Table 4.  

Specifications of a cutting insert 

Type ISO version Sub type d (mm) l (mm) s (mm) r (mm) d1 

(mm) 

-TF TNMG16404 
EN-TF 

 

CTCP115 9.525 16.51 4.7498 0.4064 3.81 

The machining performance of titanium grade-1 alloy was 

evaluated using vegetable-based nanofluid under MQL. 

The nanofluid was prepared using coconut oil as a base 

fluid mixed with hBN nanoparticles with a size of 100-

200 nm. Experiments were performed on lathe varying 

cutting speed, feed, depth of cut, and nanoparticles 

concentration in a base fluid. The process parameters 

were selected based on the literature review, tool 

manufacturer's recommendation, and pilot experiments. 

The different levels of cutting speed, feed, depth of cut, 
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and concentration of hBN nanoparticles used in the 

present study is as shown in Table 5. 

 
 

Table 5.  

Levels of process parameters 
 Parameters Levels 

Cutting speed (V) (m/min) 35, 90, 125 

Feed (f) (mm/rev) 0.1, 0.16, 0.2 

Depth of cut (d) (mm) 0.1, 0.5, 0.75 

Nanoparticle’s concentration (C) (%) 0.25, 0.5, 0.75 

 

Total 27 experiments were performed at different 

combinations of cutting speeds, feed, depth of cut, and 

nanoparticles concentration. The stand-off distance (MQL 

nozzle-tip to work surface distance) and the nanofluid 

flow rate were uniform of 30 mm and 60 ml/hr, 

respectively, for all the experiments and selected based on 

the literature review and pilot experiments. Each 

experiment was performed for 10 mm in length. Three 

components of a cutting force, namely, feed force (Fx), 

radial force (Fy), and tangential force (Fz), were 

measured using a strain gauge type cutting force 

dynamometer. Experimental setup and the components of 

resultant cutting force are as shown in Figures 2(a) and 

(b), respectively.  
 

 (a) 

 (b) 

Fig 2. (a) Experimental setup, (b) Components of cutting force 

The resultant force (Fr) was obtained using equation (1) 

or (2). 

 

                     √  
    

    
                     (1) 

Or, resultant force can be expressed as  

    [  
    

    
 ]

 
 ⁄                                                (2) 

Surface roughness was measured using Surfcom 1400G 

type surface roughness tester. The stylus used for the 

measurement is a 60
o
 conical diamond. The material 

removal rate (MRR) is the volume of material removed 

per minute and obtained using equation (3). 

 

                        ⁄                          (3) 

where, V is the cutting speed of the workpiece (m/min), f 

is feed (mm/rev), and d is depth of cut (mm).     

3. Results and Discussion 

The selection of process parameters for sustainable 

machining with optimum efficiency is crucial in the case 

of machining titanium alloys. Numerous efforts have been 

made to study the machinability of titanium alloys 

considering the effect of process parameters, tool 

material, and its geometry, and cooling conditions 

considering economic, technical, and environmental 

requirements. In the present study, the machining 

performance of titanium grade-1 alloy was evaluated in 

terms of resultant cutting force (Fr), machined surface 

roughness (Ra), and material removal rate (MRR) through 

a multi-objective optimization approach.  

Turning experiments were performed with CVD-coated 

TiCN-Al2O3 carbide inserts using vegetable oil-based 

nanofluid under minimum quantity lubrication. The 

nanofluid was prepared using coconut oil as a base fluid 

mixed with boron nitride (hBN) nanoparticles. 

Experiments were performed by varying the cutting 

speed, feed, depth of cut, and nanoparticles concentration 

in a base fluid. Three components of a cutting force, 

namely feed force (Fx), radial force (Fy), and tangential 

force (Fz), surface roughness, and material removal rate 

were measured in each experiment. The experimental 

conditions used in the present study with the results 

obtained for resultant force (Fr), surface roughness (Ra), 

and material removal rate (MRR) are as shown in Table 6. 

3.1. Mathematical models 

In recent years, a significant emphasis has been placed by 

researchers on the development of predictive models for 

performance measures during machining. In the present 

work, empirical equations for Fr and Ra are developed 

for understanding the parametric effect on the machining 

performance with contour and surface plots.  
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Table 6  

Experimental matrix with performance responses 
Expt. 
no. 

V 
(m/min) 

f 
(mm/rev) 

d 
(mm) 

C (%) Fr (N) 
Ra 

(μm) 
MRR 

(mm3/min) 

1 90 0.16 0.5 0.75 396 0.89 7200 

2 90 0.16 0.75 1 424 0.97 10800 

3 90 0.1 0.1 0.75 307 0.64 900 

4 90 0.16 0.1 0.25 301 1.16 1440 

5 90 0.2 0.5 1 405 1.3 9000 

6 35 0.1 0.1 0.25 311 0.64 350 

7 125 0.16 0.75 0.25 393 0.83 15000 

8 125 0.2 0.5 0.75 393 1.2 12500 

9 90 0.1 0.75 0.25 391 0.4 6750 

10 90 0.1 0.5 1 390 0.46 4500 

11 90 0.2 0.75 0.75 424 1.42 13500 

12 35 0.16 0.5 1 424 1.03 2800 

13 35 0.16 0.75 0.75 444 0.95 4200 

14 125 0.16 0.5 0.25 371 0.93 10000 

15 90 0.16 0.5 0.75 396 1.03 7200 

16 90 0.2 0.5 0.25 383 1.31 9000 

17 125 0.16 0.1 0.75 308 0.89 2000 

18 35 0.16 0.5 0.25 401 1.12 2800 

19 90 0.16 0.75 0.25 401 0.89 10800 

20 125 0.16 0.5 1 392 0.95 10000 

21 125 0.1 0.5 0.25 362 0.5 6250 

22 90 0.1 0.5 0.25 369 0.48 4500 

23 90 0.16 0.5 0.75 396 0.95 7200 

24 90 0.16 0.1 1 318 1.22 1440 

25 35 0.16 0.1 0.75 333 0.91 560 

26 90 0.2 0.1 0.75 318 1.58 1800 

27 35 0.2 0.5 0.75 424 1.22 3500 
 

Regression equations for resultant force (Fr) and surface 

roughness (Ra) were developed based on experimental 

data. The values of the coefficients involved in the 

equation were calculated by regression method by using 

the Data-fit software. Empirical models developed to 

predict response measures during the turning of titanium 

grade-1 alloy using coconut oil-based hBN nanofluid 

under MQL are given in Table 7.  
 

Table 7  

Empirical models to predict process responses 
Process 
responses 

Empirical models R-squared Eq. 
no.  

Resultant 

force (Fr) 

(N) 
 

 642.7336 −0.06   0.054 0. 4 9𝐶0.040  0.875 (4) 

Surface 

roughness 

(Ra) (μm) 

  3.28896 −0.0 48  .4085 −0.0805𝐶−0.006 0.905 (5) 

 

R-squared (R
2
) is a coefficient of multiple determinations 

that measures variation proportion in the data points. The 

equation is significant if the value of R-squared is very 

close to +1. In the present study, the R-squared values for 

all the developed models (Table 7) are close to 0.9. 

Therefore, the empirical equations developed are reliable 

to predict the resultant force (Fr) and surface roughness 

(Ra) during the turning of titanium grade-1 alloy using 

coconut oil-based hBN nanofluid under MQL (equations 

(4) and (5)). However, these equations are valid within the 

range of the parameters selected in the present study for 

the given combination of tool and workpiece pair. 

To have a clear understanding of the effect of a given 

input parameter on the machining performance, three-

dimensional (3-D) surface plots are plotted by varying 

two of the process parameters at a time considering the 

central values of the other process parameters as depicted 

in Table 5. The plots are plotted using developed 

empirical equations. Figure 3 depicts the 3-D surface plots 

of resultant cutting force during turning of titanium grade-

1 alloy using coconut oil-based hBN nanofluid under 

MQL plotted using equation (4). 

The resultant force can be seen as decreasing with the 

increase in the cutting speed and increases with the 

increase in feed and depth of cut, and concentration of 

hBN nanoparticles in the coconut oil. However, the 

resultant force can be seen as increasing more 

prominently with the depth of cut followed by the feed 

and concentration of nanoparticles. This can be also 

confirmed from the higher positive exponent value for the 

depth of cut followed by feed and concentration of 

nanoparticles from equation (4).  

Figure 3(a) depicts the 3-D plot of a resultant force 

varying with the cutting speed and feed. The lower 

resultant force observed at higher values of cutting speed 

could be attributed to softening of the material due to the 

rise in the cutting temperature during machining. The 

increase in the resultant force with the increase in the feed 

and decrease in the cutting speed can be seen. However, 

resultant force can be seen as varying more prominently 

with the depth of cut in comparison to cutting speed can 

be seen from Figure 3(b). The resultant force can be seen 

as increasing with the increase in the concentration of 

nanoparticles as shown in Figure 3(c). This could be 

attributed to a rise in the friction at the chip-tool interface 

due to the addition of nanoparticles in the cutting fluid. 

However, a decrease in the resultant force with the 

increase in cutting speed can be seen as more prominent 

at lower values of concentration of nanoparticles in the 

coconut oil.    

From Figures 3(d) and (e), the resultant force can be seen 

as increasing more prominently with the depth of cut and 

concentration of nanoparticles against the feed. This 

shows that the selection of depth of cut and concentration 

of nanoparticles in the base fluid is more significant in 

obtaining lower resultant force as compared to feed. On 

the other hand, from Figure 3(f), the depth of cut can be 

seen as significantly affecting the resultant force as 

compared to the concentration of nanoparticles in the base 

fluid.
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 

Fig. 3. Resultant cutting force varying with (a) V x f, (b) V x d, (c) V x C, (d) f x d, (e) f x C, and (f) d x C 
 

3-D surface plots showing surface roughness varying with 

the cutting speed, feed, depth of cut, and concentration of 

nanoparticles in the base fluid are shown in Figures 4(a) 

to (f). 3-D surface plots are plotted by varying two of the 

process parameters at a time considering the central 

values of the other process parameters as depicted in 

Table 5. Plots are plotted using equation (5). From 

Figures 4(a) and (b), the increase in the surface roughness 

of the machined surface can be seen as more significant 

with the increase in the feed. The cutting speed can be 

seen as having a negligible effect on the surface 

roughness. However, the decrease in surface roughness 

can be seen with the increase in the depth of cut. The 

concentration of nanoparticles can be seen as having a 

negligible effect on the surface roughness in comparison 

to the cutting speed from Figure 4(c) and feed can be seen 

as more prominent with respect to depth of cut and 

concentration of nanoparticles from Figures 4(d) and (e). 

On the other hand, Figure 4(f) depicts that the depth of cut 

significantly affects the surface roughness against the 

concentration of nanoparticles.  

The selection of the feed can be seen as more crucial 

followed by the cutting speed and depth of cut for 

obtaining the lower surface roughness during turning of 

titanium grade-1 alloy using coconut oil-based hBN 

nanofluid under MQL. However, the concentration of 

nanoparticles has been observed to have a negligible 

effect on the surface roughness. Lower values of surface 

roughness and resultant force could be obtained by 

selecting lower values of feed, depth of cut, and 

concentration of nanoparticles, and higher values of 

cutting speed. On the other hand, higher values for the 

material removal rate could be obtained with higher 

values of cutting speed, feed, and depth of cut. The 

objectives, to have minimum surface roughness and 

resultant force are contradicting with the maximum MRR 

objective. And hence a multi-objective optimization of 

process parameters needs to be carried out for obtaining 

the optimum machining performance during the turning of 

titanium alloy (Grade-1) using vegetable-based nanofluid 

under MQL. The next section discusses the optimization 

of process parameters. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 4. Surface roughness varying with (a) V x f, (b) V x d, (c) V x C, (d) f x d, (e) f x C, and (f) d x C 

4.  Multi-Objective Optimization 

Several attempts have been made by researchers in the 

optimization of machining performance. However, very 

limited studies available in the open literature 

comprehensively evaluated and optimized the machining 

performance considering the effect of process parameters 

during the turning of titanium grade-1 alloy using 

vegetable-based nanofluid under minimum quantity 

lubrication (MQL).  

Over the years, many classical and non-classical 

optimization techniques have been developed by 

researchers for domain engineering applications. In this 

study, a desirability function approach, a technique for 

order of preference by similarity to ideal 

solution (TOPSIS), Grey Relational Analysis (GRA), and 

non-dominated sorting genetic algorithm (NSGA-II) are 

used for simultaneous optimization of process responses, 

namely, minimum resultant force, minimum surface 

roughness, and maximum material removal rate.  

4.1. The Desirability Function Approach (DFA) 

With this approach, each response variable is transformed 

into desirability function (Di) using equation (6) and 

optimization of several response variables (Ri) are 

converted into the optimization of single desirability 

function, ‘DM’

 

using equation (7). 

 

   {

   
  −    

    −    

   

}

 

 

         

            
         

                        

 

(6)

 

                    
  ⁄                           (7)

 

Each response ‘Ri’ is transformed into its respective ‘Di’ 

by using a one-sided transformation (Chinchanikar and 

Choudhury, 2013). In the present study, the goal was to 

find the optimum values of cutting speed, feed, depth of 

cut, and concentration of nanoparticles in the base fluid 

for minimum resultant force, minimum surface roughness, 

and maximum MRR. Process variables and the range of 

process responses are given in Table 8. 
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Table 8   

Process variables and the range of process responses 
Process parameters and responses Goal Min. limit Max. limit 

Cutting speed (v) (m/min) Is in range 30 125 

Feed (f) (mm/rev) Is in range 0.1 0.2 

Depth of cut (d) (mm) Is in range 0.1 0.75 

Concentration (C) (%) Is in range 0.25 1 

Resultant force (Fr) Minimize 301 444 

Surface roughness (Ra) Minimize 0.4 1.58 

Material removal rate (MRR) Maximize 350 15000 
 

Minimum and maximum limits of the resultant force, 

surface roughness, and MRR are referred to from 

experimental observations as depicted in Table 6. One-

sided transformation for resultant force (equation 8), 

surface roughness (equation 9), and material removal rate 

(equation 10) can be expressed by substituting the 

minimum and maximum limits of the corresponding 

responses as shown in Table 9. 

For the optimization study, different combinations of 

process parameters were selected in the range depicted in 

Table 8. The cutting speed was varied in steps of 4.5 in 

the range of 35 to 125 m/min, feed varied in steps of 

0.005 in the range of 0.1 to 0.2 mm/rev, depth of cut in 

steps of 0.0325 in the range of 0.1 to 0.75 mm, and 

nanoparticles concentration in steps of 0.375 in the range 

of 0.25 to 1 %.  

For each level of independent parameters, ‘DFr’ 

(Desirability for resultant force), ‘DRa’ (Desirability for 

surface roughness), and ‘DMRR’ (desirability for material 

removal rate) were calculated using equations (8)-(10) as 

shown in Table 9. Then, a single desirability function 

‘DM’ (Desirability for minimum Fr, minimum Ra, and 

maximum MRR) was calculated by substituting the values 

of ‘DFr’, ‘DRa’, and ‘DMRR’ in equation (7). The solution 

having the highest desirability level (‘DM’) was selected 

as an optimum solution for turning titanium grade-1 alloy 

using coconut oil-based hBN nanofluid under MQL. The 

family of optimum solutions obtained is shown in Table 

10.   

The desirability function approach (DFA) suggests a 

family of optimum solutions for minimum resultant force, 

minimum surface roughness, and maximum MRR as 

depicted in Table 10. DFA optimization technique 

suggests that the cutting speed in the range of 120-125 

m/min, feed of 0.1-0.12 mm/rev, depth of cut of 0.71-0.75 

mm, and concentration of hBN nanoparticles in the range 

of 0.25-0.325% in coconut oil are the optimum 

parameters. The optimization study reveals that minimum 

resultant force in the range of 382-388 N, the minimum 

surface roughness of 0.47-0.61 μm, and maximum MRR 

in the range of 8875-11250 mm
3
/min could be obtained 

using process parameters as shown in Table 10. 

 
Table 9.  

One sided transformation for process responses for Fr, Ra, and MRR 

Sr. no. Process responses Desirability for Eq. no.  

1 Resultant cutting force (Fr)     

{
 

 
               444

         
           

        3   }
 

 

                     (Eq. 8) 

2 Surface roughness (Ra)     

{
 

 
              .58
         

           

         .4 }
 

 

                     (Eq. 9) 

3 Material removal rate (MRR)      

{
 

 
               35 
           

             

        5    }
 

 

                      (Eq. 10) 

 
   Table 10.   

   Optimum process parameters using desirability function approach (DFA) 

Sr. No. Speed (m/min) Feed (mm/rev) Depth of cut (mm) % Concentration FR (N) Ra (μm) MRR (mm3/min) 

1 125 0.1 0.75 0.325 388 0.47 9375 

2 125 0.1 0.75 0.25 383 0.47 9375 

3 120.5 0.1 0.75 0.25 384 0.48 9037.5 

4 125 0.1 0.75 0.2875 386 0.47 9375 

5 125 0.11 0.71 0.25 382 0.55 9762.5 

6 125 0.12 0.75 0.25 387 0.61 11250 
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4.2. Technique for Order Preference by Similarity to Ideal 

Solution (TOPSIS) 

This section discusses the simultaneous optimization of 

process responses, namely, minimum resultant force, 

minimum surface roughness, and maximum material removal 

rate considering the effect of process parameters using a 

Technique for Order of Preference by Similarity to Ideal 

Solution (TOPSIS). This technique was developed by Hwang 

and Yoon in the year 1995. This method works on the 

concept that the selected process parameter should be at the 

shortest distance from the best solution (Positive ideal 

solution) and the longest distance from the worst solution 

(negative idle solution) (Rao, 2011).  

In the present work, the TOPSIS method has been applied 

to convert the multi-objective responses to an equivalent 

single objective response. The TOPSIS methodology, i.e., 

the steps followed to convert the multi-response problems 

into the single response problem for obtaining the 

optimized parameters for minimum Fr, minimum Ra, and 

maximum MRR is shown in Figure 5.  

The process response matrix (decision matrix) is 

normalized by using equation (11). The weight for each 

response is calculated. The weighted normalized process 

response matrix is then calculated by multiplying the 

normalized process response matrix (decision matrix) by 

its associated weights using equation (12). Then positive 

ideal solution (S+) and the negative ideal solution (S-) are 

determined using equations (13) and (14). Further, the 

separation of each alternative from positive ideal solution 

(S+) and negative ideal solution (S-) is calculated using 

equations (15) and (16). Finally, the closeness coefficient 

of each alternative (CC ) is calculated using equation 

(17). Normalized, weighted normalized values, positive 

ideal, negative ideal solutions, separation measures, 

closeness coefficient values, and rank are depicted in 

Table 11.  

The TOPSIS results show that the rank 1 solution is the 

optimum solution for experiment number 7 as shown in 

Table 11. The process parameters for optimum results 

listed at experiment number 7 can be referred from Table 

6. It has been observed that the cutting speed of 125 

m/min, feed of 0.16 mm/rev, depth of cut of 0.75 mm, and 

concentration of hBN nanoparticles of 0.25% in coconut 

oil are the optimum parameters. Setting these parameters, 

the minimum resultant force of 393 N, the minimum 

surface roughness of 0.83 μm, and the maximum MRR of 

15000 mm3/min can be obtained (Table 6). However, 

validatory experiments are required to confirm the 

accuracy of the results. This has been observed that using 

TOPSIS one cannot have the freedom to select an 

optimum solution from a family of optimal solutions as 

obtained with the DFA technique. 
 

  Table 11  

 TOPSIS process response matrix with optimum solutions ranking 

Expt. 

no. 

Normalized results Normalized weighted matrix Separation measures Closeness 

coefficient 

Rank 

Fr Ra MRR Fr Ra MRR S+ S- CCi 

1 0.2008 0.1709 0.1861 0.0669 0.0570 0.0620 0.075857 0.07415 0.494307 10 

2 0.2153 0.1862 0.2791 0.0718 0.0621 0.0930 0.055446 0.098169 0.639059 4 

3 0.1556 0.1229 0.0233 0.0519 0.0410 0.0078 0.12242 0.064676 0.345682 17 

4 0.1527 0.2227 0.0372 0.0509 0.0742 0.0124 0.126519 0.0374 0.228163 25 

5 0.2056 0.2496 0.2326 0.0685 0.0832 0.0775 0.079366 0.076915 0.49216 12 

6 0.1577 0.1229 0.0090 0.0526 0.0410 0.0030 0.127129 0.064248 0.335715 19 

7 0.1996 0.1593 0.3876 0.0665 0.0531 0.1292 0.03164 0.135281 0.810452 1 

8 0.1992 0.2304 0.3230 0.0664 0.0768 0.1077 0.057661 0.107797 0.651507 3 

9 0.1985 0.0768 0.1744 0.0662 0.0256 0.0581 0.072683 0.093921 0.563738 8 

10 0.1981 0.0883 0.1163 0.0660 0.0294 0.0388 0.091778 0.080607 0.4676 14 

11 0.2154 0.2726 0.3488 0.0718 0.0909 0.1163 0.06974 0.113778 0.619984 6 

12 0.2153 0.1977 0.0724 0.0718 0.0659 0.0241 0.114467 0.041177 0.26456 22 

13 0.2255 0.1824 0.1085 0.0752 0.0608 0.0362 0.102375 0.0522 0.337702 18 

14 0.1883 0.1785 0.2584 0.0628 0.0595 0.0861 0.05609 0.093766 0.62571 5 

15 0.2008 0.1977 0.1861 0.0669 0.0659 0.0620 0.079977 0.06919 0.463843 16 

16 0.1945 0.2515 0.2326 0.0648 0.0838 0.0775 0.079093 0.077177 0.49387 11 

17 0.1564 0.1709 0.0517 0.0521 0.0570 0.0172 0.116289 0.05178 0.30809 20 

18 0.2036 0.2150 0.0724 0.0679 0.0717 0.0241 0.115987 0.036945 0.241578 23 

19 0.2036 0.1709 0.2791 0.0679 0.0570 0.0930 0.050792 0.100521 0.664324 2 

20 0.1991 0.1824 0.2584 0.0664 0.0608 0.0861 0.057731 0.092796 0.616474 7 

21 0.1836 0.0960 0.1615 0.0612 0.0320 0.0538 0.076337 0.08691 0.532382 9 

22 0.1873 0.0921 0.1163 0.0624 0.0307 0.0388 0.091319 0.079962 0.466846 15 

23 0.2008 0.1824 0.1861 0.0669 0.0608 0.0620 0.077523 0.07193 0.481286 13 

24 0.1615 0.2342 0.0372 0.0538 0.0781 0.0124 0.128077 0.032774 0.203754 26 

25 0.1691 0.1747 0.0145 0.0564 0.0582 0.0048 0.128704 0.046846 0.26685 21 

26 0.1615 0.3033 0.0465 0.0538 0.1011 0.0155 0.136518 0.024702 0.153219 27 

27 0.2154 0.2342 0.0904 0.0718 0.0781 0.0301 0.114024 0.035752 0.238702 24 
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Fig. 5. TOPSIS methodology 

4.3. Grey Relational Analysis (GRA) 

Grey Relational Analysis (GRA) was developed for the 

optimization of multi-performance characteristics (Lin 

and Tarng, 1998). The analysis is based on linear 

normalization of the data in the range between zero and 

one, which is also called the Grey Relational generating.  

A group of researchers has used GRA for solving the 

complicated interrelationships and to analyze the multi-

objective process responses. In this technique, the Grey 

Relational grade (GRG) is obtained as an indicator for the 

evaluation of multi-objective process responses. In GRA, 

the complex multiple response optimization problems can 

be simplified into the optimization of a single response. 

The GRG converts the multi-objective optimization 

problem (multiple responses) into a single objective 

optimization problem (single response). The steps to be 

followed to obtain the GRG are shown in Figure 6.  

 

Fig 6. Grey Relational analysis methodology  

 

 

In GRA, in step one, all process responses (the actual 

data) are transformed to a comparability sequence. This 

transformation is called Grey Relational generating. In 

this step, data are normalized and transformed to values in 

0-1 interval to avoid the effect of adopting different units 

and to reduce the variability. After that, in the further 

steps, the Grey Relational coefficient (GRC) is evaluated 

on normalized data to show the relationship between the 

predicted and actual data. 
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In the first step, process responses are transformed from 

the original sequence to a comparable sequence. 

Numerical data are normalized between zero and one. In 

this study, the normalized value of the original sequence 

for resultant cutting force and surface roughness are 

smaller-the-better performance characteristics and can be 

expressed as equation (18). The normalized value of the 

original sequence for material removal rate is a larger-the-

better performance characteristic and can be expressed as 

equation (19). The performance of experiment i is 

considered as the best for the response j if the value xij is 

equal to 1 or nearer to 1 than the value for any other 

experiment. The reference sequence X0 is defined as 

(x01, x02, …, x0j, …, x0n) = (1, 1, …, 1, …, 1), where 

x0j is the reference value for jth response and it aims to 

find the experiment whose comparability sequence is the 

closest to the reference sequence (Jozić et al., 2015). 

Considering this sequence, a reference (ideal target) 

sequence is defined, and deviation sequences are obtained 

using equation (20).  

Then, the GRC is calculated using equation (21) to 

determine how close the reference sequence (x0j) is to all 

comparability sequences (xij). The term in equation (21) 𝜉 

is a distinguishing coefficient in [0, 1] and its value is 

usually 0.5 in literature.  

The distinguishing coefficient (𝜉) is the index for 

distinguishability. The smaller the 𝜉, the higher its 

distinguishability. In the present study, the value for 𝜉 is 

considered as 0.5. The larger the grey relational 

coefficient, the closer is xij and x0j. Finally, GRG 

between the reference sequence and comparability 

sequences is a weighted sum of Grey Relational 

coefficients (GRCs) and calculated using equation (22). 

The weight of response j is wj and usually depends on 

decision makers' judgment. In the present study, equal 

weights are considered for all three responses.  

If an experiment gets the highest grey relational grade 

with the reference sequence, it means that the 

comparability sequence is most like the reference 

sequence and that experiment would be the best choice. 

The highest grey relational grade among the process 

responses is selected as the best option. Table 12 shows 

the GRA response matrix with GRCs and GRG for each 

experiment. The highest Grey Relational grade is the 

order of 1. 

 

Table 12.  

Grey relational analysis (GRA) response matrix with Grey grade and rank 
 

Expt. 

no. 

Normalized results Deviation sequences Grey relational coefficients Grey 

grade 

Grey 

Rank Fr Ra MRR Fr Ra MRR Fr Ra MRR 

1 0.3385 0.5847 0.4676 0.6615 0.4153 0.5324 0.4305 0.5463 0.4843 0.4870 19 

2 0.1400 0.5169 0.7133 0.8600 0.4831 0.2867 0.3676 0.5086 0.6356 0.5039 17 

3 0.9602 0.7966 0.0375 0.0398 0.2034 0.9625 0.9263 0.7108 0.3419 0.6597 2 

4 1.0000 0.3559 0.0744 0.0000 0.6441 0.9256 1.0000 0.4370 0.3507 0.5959 8 

5 0.2726 0.2373 0.5904 0.7274 0.7627 0.4096 0.4074 0.3960 0.5497 0.4510 23 

6 0.9308 0.7966 0.0000 0.0692 0.2034 1.0000 0.8785 0.7108 0.3333 0.6409 3 

7 0.3561 0.6356 1.0000 0.6439 0.3644 0.0000 0.4371 0.5784 1.0000 0.6718 1 

8 0.3607 0.3220 0.8294 0.6393 0.6780 0.1706 0.4389 0.4245 0.7455 0.5363 11 

9 0.3705 1.0000 0.4369 0.6295 0.0000 0.5631 0.4427 1.0000 0.4703 0.6377 4 

10 0.3764 0.9492 0.2833 0.6236 0.0508 0.7167 0.4450 0.9077 0.4109 0.5879 9 

11 0.1386 0.1356 0.8976 0.8614 0.8644 0.1024 0.3673 0.3665 0.8300 0.5212 14 

12 0.1403 0.4661 0.1672 0.8597 0.5339 0.8328 0.3677 0.4836 0.3752 0.4088 26 

13 0.0000 0.5339 0.2628 1.0000 0.4661 0.7372 0.3333 0.5175 0.4041 0.4183 24 

14 0.5103 0.5508 0.6587 0.4897 0.4492 0.3413 0.5052 0.5268 0.5943 0.5421 10 

15 0.3385 0.4661 0.4676 0.6615 0.5339 0.5324 0.4305 0.4836 0.4843 0.4661 22 

16 0.4258 0.2288 0.5904 0.5742 0.7712 0.4096 0.4654 0.3933 0.5497 0.4695 21 

17 0.9489 0.5847 0.1126 0.0511 0.4153 0.8874 0.9073 0.5463 0.3604 0.6047 6 

18 0.3006 0.3898 0.1672 0.6994 0.6102 0.8328 0.4169 0.4504 0.3752 0.4141 25 

19 0.3004 0.5847 0.7133 0.6996 0.4153 0.2867 0.4168 0.5463 0.6356 0.5329 12 

20 0.3620 0.5339 0.6587 0.6380 0.4661 0.3413 0.4394 0.5175 0.5943 0.5171 16 

21 0.5752 0.9153 0.4027 0.4248 0.0847 0.5973 0.5407 0.8551 0.4557 0.6171 5 

22 0.5240 0.9322 0.2833 0.4760 0.0678 0.7167 0.5123 0.8806 0.4109 0.6013 7 

23 0.3385 0.5339 0.4676 0.6615 0.4661 0.5324 0.4305 0.5175 0.4843 0.4774 20 

24 0.8797 0.3051 0.0744 0.1203 0.6949 0.9256 0.8061 0.4184 0.3507 0.5251 13 

25 0.7747 0.5678 0.0143 0.2253 0.4322 0.9857 0.6894 0.5364 0.3365 0.5208 15 

26 0.8787 0.0000 0.0990 0.1213 1.0000 0.9010 0.8047 0.3333 0.3569 0.4983 18 

27 0.1389 0.3051 0.2150 0.8611 0.6949 0.7850 0.3673 0.4184 0.3891 0.3916 27 

 

The highest Grey Relational grade of the order of 1 can be 

seen for experiment number 7. This shows the nearest 

optimum cutting condition with cutting speed of 125 

m/min, feed of 0.16 mm/rev, depth of cut of 0.75 mm, and 

concentration of nanoparticles of 0.25%. With these 

parameters, the minimum resultant force of 393 N, the 
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minimum surface roughness of 0.83 μm, and the 

maximum MRR of 15000 mm
3
/min can be obtained 

(Table 6). However, validatory experiments are required 

to confirm the accuracy of the results. The optimization 

solutions obtained with TOPSIS and GRA are the same. 

However, with TOPSIS and GRA one cannot have the 

freedom to select an optimum solution from a family of 

optimal solutions as obtained with the DFA technique.   

4.4 Non-dominated Sorting Genetic Algorithm II (NSGA-

II) 

Non-dominated sorting genetic algorithm-II (NSGA-II), a 

modified version of NSGA, is a popular non-domination-

based genetic algorithm for multi-objective optimization 

as being having a better sorting algorithm, incorporating 

elitism, and no need to defining sharing parameter a 

priori. NSGA lacks an elitist approach, has high 

computational complexity, and needs for function sharing. 

The complexity of the NSGA approach for sorting and 

function sharing is of the order of O(MN3), where M be 

the number of objectives and N is the population size. 

However, for the NSGA-II approach, the complexity for 

non-dominance sorting is O(MN2). In NSGA-II the 

chromosome with the least rank and highest Euclidean 

distance is considered as the best solution (Deb et al., 

2002).  

In the single-objective optimization problem, the 

superiority of a solution over other solutions can be easily 

determined by comparing their objective function values. 

However, in a multi-objective optimization problem, the 

goodness of a solution is determined by dominance. The 

non-dominated solution set is a set of all the solutions that 

are not dominated by any member of the solution set. The 

non-dominated set of the entire feasible decision space is 

called the Pareto-optimal set. The boundary defined by 

the set of all points mapped from the Pareto optimal set is 

called the Pareto optimal front. 

A group of researchers attempted modeling and multi-

objective optimization using different metaheuristic 

algorithms, including NSGA-II for the transportation-

location-routing problem (Maadanpour Safari, 2021), 

warranty model with consideration of customer and 

manufacturer objectives (Asadi et al., 2019), and airport 

gate scheduling with controllable processing times 

(Khakzar Bafruei, 2018). The NSGA-II algorithm for 

obtaining a family of multi-objective optimum solutions is 

shown in Figure 7.  

Initially, the population needs to be initialized and then 

required to sort based on non-domination into each front. 

Every individual in each front is assigned a rank (fitness 

value). A crowding distance, which is a measure of how 

close an individual is to its neighbors, is obtained for 

every individual. Better diversity in the population can be 

obtained by having individuals with large crowding 

distances. Based on the rank and crowding distance 

parents are selected from the population using a binary 

tournament selection. The selected population generates 

offsprings from crossover and mutation operators. Using 

non-domination again the population with the current 

population and current offsprings is sorted and only the 

best N (Population size) individuals are selected based on 

rank and the crowding distance. 

Fig 7. NSGA II algorithm for multi-objective optimization
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In the present study of the multi-objective optimization, 

initially, the population is initialized based on the range of 

the process parameters. Then initialized population is 

sorted based on non-domination using the fast sort 

algorithm. Once the non-dominated sort is completed, all 

the individuals in the population are assigned a crowding 

distance value. Once the individuals are sorted based on 

non-domination and with crowding distance assigned, the 

selection is carried out using a crowded comparison 

operator. The individuals are selected by using a binary 

tournament selection with a crowded comparison 

operator. Real-coded GA’s which use simulated binary 

crossover (SBX) operator were applied for crossover and 

used polynomial mutation. Then the offspring population 

is combined with the current generation population and 

selection is performed to set the individuals of the next 

generation. Elitism is ensured as all the previous and 

current best individuals are added to the population and 

then the population is sorted based on non-domination. 

The parameters used in the present study for NSGA-II for 

the multi-objective problem are depicted in Table 13. 

 
Table 13. 

NSGA-II parameters setting for multi-objective optimization 
Parameters Values 

Population size 1000 

Generation 100 

Crossover probability 0.8 

Crossover constant    0.5 

Mutation probability   0.5 

Mutation constant   20 

 

At each generation, the best chromosomes are selected 

and replaced based on their rank and crowding distance. 

Population replaced at each generation. Each front is 

filled in ascending order until the addition of population 

size is reached. The last front is included in the population 

based on the individuals with the least crowding distance. 

Individuals in the first front are given a rank of 1, the 

second front individuals are assigned rank 2, and so on. 

After assigning the rank the crowding in each front is 

calculated. Figure 8 shows the Pareto plots between the 

objective functions for a complete population of 1000 

chromosomes.  

Figure 8(a) depicts the Pareto plot for resultant force 

versus the material removal rate. The Pareto plots 

represent the potential trade-offs between multi-objective 

functions. They can be aligned to offer the best fit and 

worst fit scenarios among the objective functions. The 

higher MRR of about 10000 mm
3
/min could be optimally 

achieved with a little higher resultant force in the range of 

370-400 N can be seen. Similarly, Figure 8(b) depicts that 

the surface roughness of about 0.47-0.5 μm could be 

optimally achieved with a higher MRR of about 10000 

mm
3
/min. And a lower surface roughness in the range of 

0.47-0.55 μm could be optimally obtained with resultant 

force in the range of 370-410 N (Figure 8(c)) during the 

turning of titanium grade-1 alloy using coconut oil-based 

hBN nanofluid. The material removal rate versus surface 

roughness shows an opposing behavior while MRR versus 

resultant force (Fr) shows allied behavior. Surface 

roughness versus resultant force can be seen as having 

opposing behavior Pareto plots. 

 

 
(a) 

 

 
 

(b) 

 

 
(c) 

Fig. 8. Pareto plots for complete population, (a) Fr Vs MRR, (b) 

Ra Vs MRR, and (c) Fr Vs Ra
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Fig. 9. Pareto plots between the objective functions for child chorosome 

Figure 9 depicts Pareto plots between the objective 

functions for the child chromosome. The Pareto plot 

shows optimal chromosomes replacing intermediate 

chromosomes at the final generation and their correlations 

with each objective function. The demography of each 

curve is the outcome of the selection and genetic 

operation at the final generation. These are discrete scatter 

plots of objective functions selected based on ranks 

assigned to non-sorted dominant fronts. Surface 

roughness versus resultant force plot shows that surface 

roughness is a negative differential to resultant force. 

MRR versus resultant force plot depicts a mix of positive 

and negative differential. However, MRR versus surface 

roughness shows a negative differential. The tendency of 

chromosomes reflects that they are biased towards 

maximizing respective objective functions at extreme 

ends. The direction of declination shows that surface 

roughness improves with a gradual decrease in force. 

 

Fig. 10. Optimal solutions corresponding to concentration of nanoparticles 
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Figures 10 and 11 show that the influence of objective 

functions with decision variables obtained from optimal 

chromosomes. On an overview, most of the optimized 

solutions correspond to minimum concentration for all the 

objective functions as shown in Figure 10. However, 

some solutions can be seen as inclined towards a higher 

concentration of nanoparticles. The mean line in the graph 

shows that how the solutions maneuvers between global 

maxima and minima.  

Surface roughness solutions are grouped around minimum 

concentration ranging between 0.25-0.35 μm with few 

solutions ranging under the mean line. Optimal resultant 

force solutions are grouped around the minimum 

concentration of nanoparticles with a few solution sets 

showing an increase in the resultant force with the 

increase in the concentration of nanoparticles. Maximum 

MRR corresponds at both the extremes of concentrations 

with a maximum group of solutions clustered at minimum 

concentration. Few solutions cover the overall search area 

oscillating around the mean line of MRR. The mean line 

here acts as a region classifier to determine between best-

fit solutions' most optimal and least optimal solutions. 

Figure 11 shows the objective functions respond to a 

depth of cut. A gradual growth in the resultant force with 

the depth of cut and optimal solutions clustering at both 

extremes can be seen. A majority of surface roughness 

optimal solutions can be seen below the mean line of 

surface roughness and for higher depth of cut. Most 

optimal solutions for MRR can be seen clustered at higher 

depth of cut.  

The objectives in the best fit chromosomes show that the 

solutions are optimized for minimum feed, maximum 

cutting speed, maximum depth of cut, and at minimum 

concentration of nanoparticles in the base fluid. The 

family of optimized process parameters revealed from 

NSGA-II is shown in Table 14.  

NSGA-II optimization technique suggests a family of 

optimum solutions for minimum resultant force, minimum 

surface roughness, and maximum material removal rate. 

The cutting speed in the range of 119-125 m/min, feed of 

0.1 mm/rev, depth of cut of 0.55-0.75 mm, and 

concentration of hBN nanoparticles in the range of 0.25-

0.29% in coconut oil are the optimum parameters. The 

optimization   study reveals that minimum resultant force 

in the range of 369-392 N, the minimum surface 

roughness of 0.47-0.49 μm, and maximum MRR in the 

range of 6545-9375 mm
3
/min could be obtained.  

 

 
Fig. 11. Optimal solutions corresponding to depth of cut 

     Table 14   

     Optimum process parameters using NSGA-II 
Sr. No. Speed (m/min) Feed (mm/rev) Depth of cut (mm) % Concentration FR (N) Ra (μm) MRR (mm3/min) 

1 125 0.1 0.75 0.29 392 0.47 9375 
2 121 0.1 0.73 029 386 0.48 8833 
3 123 0.1 0.56 0.26 369 0.49 6888 
4 121 0.1 0.57 0.25 370 0.49 6897 
5 119 0.1 0.55 0.25 369 0.49 6545 
6 123 0.1 0.56 0.26 369 0.49 6888 

 

  Table 15   

  Optimized parameters with different techniques 
Optimiza

tion 

techniqu

es 

Optimized process parameters Optimized process performance 

Cutting speed (V) 

(m/min) 

Feed (f) 

(mm/rev)  

Depth of cut 

(d) (mm) 

% 

Concentration 

Resultant force 

(Fr) (N) 

Surface roughness 

(Ra) (μm) 

MRR 

(mm3/min) 

DFA 125 0.1 0.75 0.325 388 0.47 9375 

TOPSIS 125 0.16 0.75 0.25 393 0.83 15000 

GRA 125 0.16 0.75 0.25 393 0.83 15000 

NSGA-II 125 0.1 0.75 0.29 392 0.47 9375 
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4.4. Confirmatory experiments 

The accuracy of the predicted optimized results of the 

resultant force, surface roughness, and material removal 

rate is assessed by experimenting with optimum process 

parameters. The optimum process parameters revealed 

from different optimization techniques are shown in Table 

15. Almost all the optimization techniques suggested a 

higher cutting speed of 125 m/min, lower feed rate of 0.1 

mm/rev, higher depth of cut of 0.75 mm, and 

nanoparticles concentration of 0.3% as optimum 

parameters for lower surface roughness, lower resultant 

force, and maximum material removal rate. 

The confirmatory experiment is performed at the above-

mentioned optimum process parameters to check the 

accuracy of the predicted results. The confirmatory 

experiment is performed at a cutting speed of 125 m/min, 

feed of 0.1 mm/rev, depth of cut of 0.75 mm, and using a 

concentration of nanoparticles of 0.3 %, and the same is 

repeated thrice as depicted in Table 16. It has been 

observed that the average resultant force and surface 

roughness of 387 N and 0.47 µm, respectively, and 

maximum MRR of 9375 mm3/min could be obtained 

using the cutting speed, feed, depth of cut, and hBN 

nanoparticles concentration of 125 m/min, 0.1 mm/rev, 

0.75 mm, and 0.3%, respectively during turning of 

titanium grade-1 alloy using coconut oil-based hBN 

nanofluid under MQL. However, little compromising on 

the surface roughness to a higher value of 0.83 µm with 

resultant force of 392 N, the higher MRR of 15000 

mm3/min could be obtained using cutting speed of 125 

m/min, feed of 0.16 mm/rev, depth of cut of 0.75 mm, and 

nanoparticle concentration of 0.25%.   

This study finds that non-dominated sorting genetic 

algorithm II (NSGA-II) followed by the desirability 

function approach are the most suitable techniques for 

multi-objective optimization of turning of titanium grade-

1 alloy under nanofluid MQL. These techniques provide a 

family of optimal solutions and one can have an option to 

select the process parameters from a set of optimal 

solutions. However, TOPSIS and Grey Relational analysis 

are lacking in providing a family of optimum solutions. 

However, they are suitable for obtaining quicker solutions 

due to less computational time especially for a limited 

range of the process parameters. This study suggests 

further investigations on the machinability of titanium 

grade-1 alloy under nanofluid MQL considering tool wear 

and surface integrity of the machined surface.  

5. Conclusions 

In the present study, the machining performance of CVD-

coated TiCN-Al2O3 carbide inserts using vegetable oil-

based nanofluid under minimum quantity lubrication is 

evaluated during turning of titanium grade-1 alloy. The 

resultant cutting force, machined surface roughness, and 

material removal rate (MRR) are measured varying the 

cutting speed, feed, depth of cut, and nanoparticles 

concentration in a base fluid. The nanofluid was prepared 

using coconut oil as a base fluid mixed with boron nitride 

(hBN) nanoparticles. The process parameters are 

optimized using the Desirability Function Approach 

(DFA), a Technique for Order of Preference by Similarity 

to Ideal Solution (TOPSIS), Grey Relational Analysis 

(GRA), and Non-dominated Sorting Genetic Algorithm 

(NSGA-II) for minimum Fr, minimum Ra, and maximum 

MRR. The following conclusions could be drawn from the 

present study.  

 It has been observed that the selection of depth of cut 

and concentration of nanoparticles in the base fluid 

are more significant in obtaining lower resultant force 

as compared to feed. On the other hand, the depth of 

cut has been observed as significantly affecting the 

resultant force as compared to the concentration of 

nanoparticles in the base fluid. 

 Surface roughness has been observed getting 

significantly affected with feed. However, the 

concentration of nanoparticles has been observed to 

have a negligible effect on the surface roughness. 

This study found that lower values of surface 

roughness and resultant force could be obtained with 

lower values of feed, depth of cut, and concentration 

of nanoparticles, and higher values of cutting speed. 

On the other hand, higher values for the material 

removal rate could be obtained with higher values of 

cutting speed, feed, and depth of cut. 

 The optimized solutions obtained from different 

optimization techniques are observed in better 

agreement. The results show optimum performance at 

the higher cutting speed (120-125 m/min), higher 

depth of cut (0.7-0.75), lower feed (0.1-0.13 

mm/rev), and lower concentration of nanoparticles 

(0.25-0.35%). Lowest values for resultant force and 

surface roughness of 387 N and 0.47 µm, 

respectively, and maximum MRR of 9375 mm
3
/min 

could be obtained using the cutting speed, feed, depth 

of cut, and hBN nanoparticles concentration of 125 

m/min, 0.1 mm/rev, 0.75 mm, and 0.3%, 

respectively. 

 Little compromising on the surface roughness to a 

higher value of 0.83 µm with resultant force of 392 

N, the higher MRR of 15000 mm
3
/min could be 

obtained using cutting speed of 125 m/min, feed of 

0.16 mm/rev, depth of cut of 0.75 mm, and 

nanoparticle concentration of 0.25%.   

 This study finds that NSGA-II followed by the 

desirability function approach are better for multi-

objective optimization of turning of titanium grade-1 

alloy under nanofluid MQL in comparison to 

TOPSIS and GRA. TOPSIS and GRA has been 

observed in lacking in providing a family of optimal 

solutions. However, they are suitable for obtaining 

quicker solutions due to less computational time 

especially for a limited range of the process 

parameters.  

 This study finds scope for further research on the 

machining of titanium alloys using hybrid nanofluids 

under MQL. A comprehensive study needs to be 

undertaken on parametric optimization of MQL 

machining of titanium alloys considering type, shape, 

size, the concentration of nanoparticles with the MQL 

parameters such as flow rate, nozzle orientation 
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angle, and air pressure  

References  

Aitken, R. J., Chaudhry, M. Q., Boxall, A. B. A., & Hull, 

M. (2006). Manufacture and use of nanomaterials: 

current status in the UK and global 

trends. Occupational medicine, 56(5), 300-306. 

Anandan, V., Babu, M. N., Muthukrishnan, N., & Babu, 

M. D. (2020). Performance of silver nanofluids with 

minimum quantity lubrication in turning on titanium: 

a phase to green manufacturing. Journal of the 

Brazilian Society of Mechanical Sciences and 

Engineering, 42(4), 1-15. 

Asadi, A., Saidi-Mehrabad, M., & Fathi Aghdam, F. 

(2019). A Two-Dimensional Warranty Model With 

Consideration Of Customer And Manufacturer 

Objectives Solved With Non-Dominated Sorting 

Genetic Algorithm. Journal Of Optimization In 

Industrial Engineering, 12(1), 15-22. 

Boyer, R. R., & Briggs, R. D. (2005). The use of β 

titanium alloys in the aerospace industry. Journal of 

Materials Engineering and Performance, 14(6), 681-

685. 

Chinchanikar, S., Kore, S. S., & Hujare, P. (2021). A 

review on nanofluids in minimum quantity 

lubrication machining. Journal of Manufacturing 

Processes, 68, 56-70. 

Chinchanikar, S., Bawangaonwala, H. M., Bokade, S., & 

Garode, S. (2020). Investigations on the Machining 

Performance using Solid Lubricant Mixed with 

Varying Proportions in Vegetable Oil during Hard 

Turning. In IOP Conference Series: Materials 

Science and Engineering (Vol. 810, No. 1, p. 

012044). IOP Publishing. 

Chinchanikar, S., & Choudhury, S. K. (2015). Machining 

of hardened steel—experimental investigations, 

performance modeling and cooling techniques: a 

review. International Journal of Machine Tools and 

Manufacture, 89, 95-109. 

Chinchanikar, S., & Choudhury, S. K. (2013). Effect of 

work material hardness and cutting parameters on 

performance of coated carbide tool when turning 

hardened steel: An optimization 

approach. Measurement, 46(4), 1572-1584. 

Das, S. K., Choi, S. U., & Patel, H. E. (2006). Heat 

transfer in nanofluids—a review. Heat transfer 

engineering, 27(10), 3-19. 

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. 

T. (2002). A fast and elitist multiobjective genetic 

algorithm: NSGA-II. IEEE transactions on 

evolutionary computation, 6(2), 182-197. 

Dhar, N. R., Ahmed, M. T., & Islam, S. (2007). An 

experimental investigation on effect of minimum 

quantity lubrication in machining AISI 1040 

steel. International Journal of Machine Tools and 

Manufacture, 47(5), 748-753. 

Dhar, N. R., Kamruzzaman, M., & Ahmed, M. (2006). 

Effect of minimum quantity lubrication (MQL) on 

tool wear and surface roughness in turning AISI-4340 

steel. Journal of materials processing 

technology, 172(2), 299-304. 

Gaurav, G., Sharma, A., Dangayach, G. S., & Meena, M. 

L. (2020). Assessment of jojoba as a pure and nano-

fluid base oil in minimum quantity lubrication 

(MQL) hard-turning of Ti–6Al–4V: A step towards 

sustainable machining. Journal of Cleaner 

Production, 272, 122553. 

Gupta, M. K., Sood, P. K., & Sharma, V. S. (2016). 

Optimization of machining parameters and cutting 

fluids during nano-fluid based minimum quantity 

lubrication turning of titanium alloy by using 

evolutionary techniques. Journal of Cleaner 

Production, 135, 1276-1288. 

Hegab, H., Umer, U., Deiab, I., & Kishawy, H. (2018). 

Performance evaluation of Ti-6Al-4V machining 

using nano-cutting fluids under minimum quantity 

lubrication. International Journal of Advanced 

Manufacturing Technology, 95, 4229–4241. 

Jamil, M., He, N., Li, L., & Khan, A. M. (2020). Clean 

manufacturing of Ti-6Al-4V under CO2-snow and 

hybrid nanofluids. Procedia Manufacturing, 48, 131-

140. 

Jozić, S., Bajić, D., & Celent, L. (2015). Application of 

compressed cold air cooling: achieving multiple 

performance characteristics in end milling 

process. Journal of Cleaner Production, 100, 325-332. 

Kalyon, A., Günay, M., & Özyürek, D. (2018). 

Application of grey relational analysis based on 

Taguchi method for optimizing machining 

parameters in hard turning of high chrome cast 

iron. Advances in Manufacturing, 6(4), 419-429. 

Kang, M. C., Kim, K. H., Shin, S. H., Jang, S. H., Park, J. 

H., & Kim, C. (2008). Effect of the minimum 

quantity lubrication in high-speed end-milling of 

AISI D2 cold-worked die steel (62 HRC) by coated 

carbide tools. Surface and Coatings 

Technology, 202(22-23), 5621-5624. 

Katta, S., & Chaitanya, R. S. (2018). Experimental 

Investigations of Graphene Nanoparticle-Based 

Cutting Fluid during Turning of Titanium Alloy 

(Grade 5) with Minimum Quantity Lubrication. 

Journal of Advanced Research in Manufacturing, 

Material Science & Metallurgical Engineering, 

5(1&2), 22-30. 

Kishawy, H. A., Dumitrescu, M., Ng, E. G., & Elbestawi, 

M. A. (2005). Effect of coolant strategy on tool 

performance, chip morphology and surface quality 

during high-speed machining of A356 aluminum 

alloy. International Journal of Machine Tools and 

Manufacture, 45(2), 219-227. 

Khakzar Bafruei, M., Khatibi, S., & Rahmani, M. (2018). 

A Bi-Objective Airport Gate Scheduling with 

Controllable Processing Times Using Harmony 

Search and NSGA-II Algorithms. Journal of 

Optimization in Industrial Engineering, 11(1), 77-90. 

Kosaraju, S., & Anne, V. G. (2013). Optimal machining 

conditions for turning Ti-6Al-4V using response 

surface methodology. Advances in 

Manufacturing, 1(4), 329-339. 



Satish Chinchanikar and et al./ Multi-objective Optimization of Turning of... 

 

260 

 

Krishna, P. V., Srikant, R. R., & Rao, D. N. (2010). 

Experimental investigation on the performance of 

nanoboric acid suspensions in SAE-40 and coconut 

oil during turning of AISI 1040 steel. International 

Journal of machine Tools and manufacture, 50(10), 

911-916. 

Kumar, R., Sahoo, A. K., Mishra, P. C., & Das, R. K. 

(2018). Comparative study on machinability 

improvement in hard turning using coated and 

uncoated carbide inserts: part II modeling, multi-

response optimization, tool life, and economic 

aspects. Advances in Manufacturing, 6(2), 155-175. 

Kumar, T. A., Pradyumna, G., & Jahar, S. (2012). 

Investigation of thermal conductivity and viscosity of 

nanofluids. Journal of environmental research and 

development, 7(2). 

Kumar, C. R. V., & Ramamoorthy, B. (2007). 

Performance of coated tools during hard turning 

under minimum fluid application. Journal of 

Materials Processing Technology, 185(1-3), 210-216. 

Leppert, T. (2011). Effect of cooling and lubrication 

conditions on surface topography and turning process 

of C45 steel. International Journal of Machine Tools 

and Manufacture, 51(2), 120-126. 

Li, N., Chen, Y. J., & Kong, D. D. (2019). Multi-response 

optimization of Ti-6Al-4V turning operations using 

Taguchi-based grey relational analysis coupled with 

kernel principal component analysis. Advances in 

Manufacturing, 7(2), 142-154. 

Lin, J. L., & Tarng, Y. S. (1998). Optimization of the 

multi-response process by the Taguchi method with 

grey relational analysis. Journal of Grey system, 4(4), 

355-370. 

Liu, Z., An, Q., Xu, J., Chen, M., & Han, S. (2013). Wear 

performance of (nc-AlTiN)/(a-Si3N4) coating and 

(nc-AlCrN)/(a-Si3N4) coating in high-speed 

machining of titanium alloys under dry and minimum 

quantity lubrication (MQL) conditions. Wear, 305(1-

2), 249-259. 

Maadanpour Safari, F., Etebari, F., & Pourghader Chobar, 

A. (2021). Modelling and optimization of a tri-

objective Transportation-Location-Routing Problem 

considering route reliability: using MOGWO, 

MOPSO, MOWCA and NSGA-II. Journal of 

Optimization in Industrial Engineering, 14(2), 99-

114. 

Maruda, R. W., Krolczyk, G. M., Michalski, M., 

Nieslony, P., & Wojciechowski, S. (2017). Structural 

and microhardness changes after turning of the AISI 

1045 steel for minimum quantity cooling 

lubrication. Journal of Materials Engineering and 

Performance, 26(1), 431-438. 

Rahmati, B., Sarhan, A. A., & Sayuti, M. (2014). 

Investigating the optimum molybdenum disulfide 

(MoS 2) nanolubrication parameters in CNC milling 

of AL6061-T6 alloy. The International Journal of 

Advanced Manufacturing Technology, 70(5-8), 1143-

1155. 

Rao, R. V. (2011). Overview. In Advanced Modeling and 

Optimization of Manufacturing Processes (pp. 1-54). 

Springer, London. 

Sharma, A. K., Katiyar, J. K., Bhaumik, S., & Roy, S. 

(2019). Influence of alumina/MWCNT hybrid 

nanoparticle additives on tribological properties of 

lubricants in turning operations. Friction, 7(2), 6. 

Sharma, A. K., Singh, R. K., Dixit, A. R., & Tiwari, A. K. 

(2017). Novel uses of alumina-MoS2 hybrid 

nanoparticle enriched cutting fluid in hard turning of 

AISI 304 steel. Journal of Manufacturing 

Processes, 30, 467-482. 

Sharma, A. K., Tiwari, A. K., & Dixit, A. R. (2015). 

Progress of nanofluid application in machining: a 

review. Materials and Manufacturing 

Processes, 30(7), 813-828. 

Singh, V., Sharma, A. K., Sahu, R. K., & Katiyar, J. K. 

(2021). Novel application of graphite-talc hybrid 

nanoparticle enriched cutting fluid in turning 

operation. Journal of Manufacturing Processes, 62, 

378-387. 

Varote, N., & Joshi, S. S. (2017). Microstructural analysis 

of machined surface integrity in drilling a titanium 

alloy. Journal of Materials Engineering and 

Performance, 26(9), 4391-4401. 

 
 

 

 

 

This article can be cited:

Chinchanikar, S., Katiyar, J., Manav, O. (2022). Multi-objective Optimization of 

Turning of Titanium Alloy Under Minimum Quantity Lubrication.

Journal of Optimization in Industrial Engineering, 15(1), 243-260. 

http://www.qjie.ir/article_687008.html

DOI: 10.22094/joie.2021.1937743.1886           


