An Efficient Economic-Statistical Design of Simple Linear Profiles Using a Hybrid Approach of Data Envelopment Analysis, Taguchi Loss Function, and MOPSO
Subject Areas : Journal of Physical & Theoretical ChemistryMaryam Fazelimoghadam 1 , Mohammad Javad Ershadi 2 , Seyed Taghi Akhavan Niaki 3
1 - Department of Industrial Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 - Department of Information Technology, Iranian Research Institute for Information Science and Technology (IRANDOC), Tehran, Iran
3 - Department of Industrial Engineering , Sharif University of Technology, Tehran, Iran
Keywords:
Abstract :
Azizi, R., & Kazemi Matin, R. (2018). A Ratio-Based Efficiency Measurement for Ranking Multi-Stage Production Systems in DEA. Journal of Optimization in Industrial Engineering, 11(1), 195-202.
Barzinpour, F., Noorossana, R., Niaki, S. T. A., & Ershadi, M. J. (2013). A hybrid Nelder–Mead simplex and PSO approach on economic and economic-statistical designs of MEWMA control charts. The International Journal of Advanced Manufacturing Technology, 65(9-12), 1339-1348.
Ahn, T., Charnes, A., & Cooper, W. W. (1988). Efficiency characterizations in different DEA models. Socio-Economic Planning Sciences, 22(6), 253-257.
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research, 2(6), 429-444.
Chen, Y. S., & Yang, Y. M. (2002). Economic design of x-control charts with Weibull in-control times when there are multiple assignable causes. International Journal of Production Economics, 77(1), 17-23.
Chou, C. Y., Cheng, J. C., & Lai, W. T. (2008). Economic design of variable sampling intervals EWMA charts with sampling at fixed times using genetic algorithms. Expert Systems with Applications, 34(1), 419-426.
Chou, C. Y., Liu, H. R., Huang, X. R., & Chen, C. H. (2002). Economic-statistical design of multivariate control charts using quality loss function. The International Journal of Advanced Manufacturing Technology, 20(12), 916-924.
Coello, C. A. C., Pulido, G. T., & Lechuga, M. S. (2004). Handling multiple objectives with particle swarm optimization. IEEE Transactions on evolutionary computation, 8(3), 256-279.
Costa, A. F., & Rahim, M. A. (2001). Economic design of X charts with variable parameters: the Markov chain approach. Journal of Applied Statistics, 28(7), 875-885.
Duncan, A. J. (1971). The economic design of-charts when there is a multiplicity of assignable causes. Journal of the American Statistical Association, 66(333), 107-121.
Elsayed, E. A., & Chen, A. (1994). An economic design of [xbar] control chart using quadratic loss function. The International Journal of Production Research, 32(4), 873-887.
Ershadi, M. J., Aiasi, R., & Kazemi, S. (2018). Root cause analysis in quality problem solving of research information systems: a case study. International Journal of Productivity and Quality Management, 24(2), 284-299.
Ershadi, M. J., Noorossana, R., & Niaki, S. T. A. (2016). Economic design of phase II simple linear profiles with variable sample size. Int J Prod Qual Manag, 18(4), 537-555.
Ershadi, M. J., Noorossana, R., & Niaki, S. T. A. (2016). Economic-statistical design of simple linear profiles with variable sampling interval. Journal of Applied Statistics, 43(8), 1400-1418.
Ershadi, M. J., & Omidzadeh, D. (2018). Customer Validation using Hybrid Logistic Regression and Credit Scoring Model: A Case Study. Calitatea, 19(167), 59-62.
Kang, L., & Albin, S. L. (2000). On-line monitoring when the process yields a linear profile. Journal of quality Technology, 32(4), 418-426.
Kennedy, J., & Eberhart, R. C. (1997, October). A discrete binary version of the particle swarm algorithm. In 1997 IEEE International conference on systems, man, and cybernetics. Computational cybernetics and simulation (Vol. 5, pp. 4104-4108). IEEE.
Keramatpour, M., Akhavan Niaki, S. T., & Amiri, A. (2014). Phase-II monitoring of AR (1) autocorrelated polynomial profiles. Journal of Optimization in Industrial Engineering, 7(14), 53-59.
Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. science, 220(4598), 671-680.
Linderman, K. W. (1999). Economic design of multivariate exponentially weighted moving average (MEWMA) control charts.
Liu, J., Tan, C., & Zeng, C. (2017). Parameter optimization for a modified MEWMA control chart based on a PSO algorithm. Communications in Statistics-Simulation and Computation, 46(5), 4140-4153.
Lorenzen, T. J., & Vance, L. C. (1986). The economic design of control charts: a unified approach. Technometrics, 28(1), 3-10.
Mestek, O., Pavlík, J., & Suchánek, M. (1994). Multivariate control charts: control charts for calibration curves. Fresenius' journal of analytical chemistry, 350(6), 344-351.
Molnau, W. E., Montgomery, D. C., & Runger, G. C. (2001). Statistically constrained economic design of the multivariate exponentially weighted moving average control chart. Quality and Reliability Engineering International, 17(1), 39-49.
Montgomery, D.C. (2005). Design and analysis of experiments. 6th ed. John Wiley & Sons, Inc., New York.
Niaki, S. T. A., Malaki, M., & Ershadi, M. J. (2011). A particle swarm optimization approach on economic and economic-statistical designs of MEWMA control charts. Scientia Iranica, 18(6), 1529-1536.
Niaki, S. T. A., & Ershadi, M. J. (2012). A hybrid ant colony, Markov chain, and experimental design approach for statistically constrained economic design of MEWMA control charts. Expert Systems with Applications, 39(3), 3265-3275.
Niaki, S. T. A., & Ershadi, M. J. (2012). A parameter-tuned genetic algorithm for statistically constrained economic design of multivariate CUSUM control charts: a Taguchi loss approach. International Journal of Systems Science, 43(12), 2275-2287.
Niaki, S. T. A., Malaki, M., & Ershadi, M. J. (2011). A comparative study of four evolutionary algorithms for economic and economic-statistical designs of MEWMA control charts. Journal of Optimization in Industrial Engineering, (9), 1-13.
Noorossana, R., Niaki, S. T. A., & Ershadi, M. J. (2014). Economic and economic‐statistical designs of phase II profile monitoring. Quality and Reliability Engineering International, 30(5), 645-655.
Sadigh, A. N., Mokhtari, H., Iranpoor, M., & Ghomi, S. M. T. (2012). Cardinality constrained portfolio optimization using a hybrid approach based on particle swarm optimization and Hopfield neural network. Advanced Science Letters, 17(1), 11-20.
Sadigh, A. N., Mozafari, M., & Kashan, A. H. (2010). A mixed integer linear program and tabu search approach for the complementary edge covering problem. Advances in Engineering Software, 41(5), 762-768.
Safaei, A. S., Kazemzadeh, R. B., & Niaki, S. T. A. (2012). Multi-objective economic statistical design of X-bar control chart considering Taguchi loss function. The International Journal of Advanced Manufacturing Technology, 59(9-12), 1091-1101.
Saghaei, A., Fatemi Ghomi, S. M. T., & Jaberi, S. (2014). Economic design of exponentially weighted moving average control chart based on measurement error using genetic algorithm. Quality and Reliability Engineering International, 30(8), 1153-1163.
Saniga, E. M. (1989). Economic statistical control-chart designs with an application to and R charts. Technometrics, 31(3), 313-320.
Serel, D. A. (2009). Economic design of EWMA control charts based on loss function. Mathematical and Computer Modelling, 49(3-4), 745-759.
Serel, D. A., & Moskowitz, H. (2008). Joint economic design of EWMA control charts for mean and variance. European Journal of Operational Research, 184(1), 157-168.
Taguchi, G., & Wu, Y. (1979). Introduction to off-line quality control. Central Japan Quality Control Assoc..
Tavana, M., Li, Z., Mobin, M., Komaki, M., & Teymourian, E. (2016). Multi-objective control chart design optimization using NSGA-III and MOPSO enhanced with DEA and TOPSIS. Expert Systems with Applications, 50, 17-39.
Walker, E., & Wright, S. P. (2002). Comparing curves using additive models. Journal of Quality Technology, 34(1), 118-129.
Yaghoubi, A., Amiri, M., & Safi Samghabadi, A. (2016). A New Dynamic Random Fuzzy DEA Model to Predict Performance of Decision Making Units. Journal of Optimization in Industrial Engineering, 9(20), 75-90.
Yang, W. A., Guo, Y., & Liao, W. (2012). Economic and statistical design of and S control charts using an improved multi-objective particle swarm optimisation algorithm. International Journal of Production Research, 50(1), 97-117.