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Abstract 
 

Statistically constrained economic design for profiles usually refers to the selection of some parameters such as the sample 

size, sampling interval, smoothing constant, and control limit for minimizing the total implementation cost while the designed 

profiles demonstrate a proper statistical performance. In this paper, the Lorenzen-Vance function is first used to model the 

implementation costs. Then, this function is extended by the Taguchi loss function to involve intangible costs. Next, a multi-

objective particle swarm optimization (MOPSO) method is employed to optimize the extended model. The parameters of the 

MOPSO are tuned using response surface methodology (RSM). In addition, data envelopment analysis (DEA) is employed to 

find efficient solutions among all near-optimum solutions found by MOPSO. Finally, a sensitivity analysis based on the 

principal parameters of the cost function is applied to evaluate the impacts of changes on the main parameters. The results 

show that the proposed model is robust on some parameters such as the cost of detecting and repairing an assignable cause, 

variable cost of sampling, and fixed cost of sampling. 
 

Keywords: MOPSO; Economic-statistical design; Linear profiles; Quadratic loss function; Data envelopment analysis (DEA); 

Response Surface Methodology (RSM) 

 

1. Introduction 

 

Nowadays control charts are employed to monitor critical 

parameters of a process based on their probability 

distributions (Montgomery, 2005). Generally, most 

processes could not be executed in the state of in-control 

indefinitely. Thus, the continuous application of a control 

chart will identify the assignable cause. Also, the 

statistically constrained design for a control chart refers to 

determining its control limit(s) so as the chart exhibits 

good statistical performances in the in-control process 

conditions and the out-of-control state as well.  

Designing control chart by considering the cost of 

application (called economic design) was firstly proposed 

by Duncan (1971) to minimize a cost objective function 

with only a single assignable cause. Lorenzen and Vance 

(1986) developed a model for the costs of implementation 

in many types of control charts. As the economical design 

usually has a poor statistical performance, Saniga (1989) 

applied statistical constraints to construct an economic-

statistical model for designing a chart that takes into 

account both Type-I and Type-II errors.  

In some applications, as follows, it is necessary to plot the 

quality characteristic of a process or a product by a  

 

functional relationship called profiles. Walker and Wright 

(2002) introduced an example for the application of a 

profile. Mestek et al. (1994) used a similar idea to 

investigate a calibration process.  

In this paper, a statistically constrained economic model is 

presented for linear profiles. In this model, the general 

cost function (named Lorenzen-Vance) is extended by the 

Taguchi loss function. In order to achieve an efficient 

design the data envelopment analysis (DEA) approach is 

employed. Due to the complexity involved, a meta-

heuristic algorithm is utilized to solve the problem where 

its parameters are tuned using response surface 

methodology (RSM). In final section, a sensitivity 

analysis for the main parameters of the chart is performed 

to investigate their impacts on the efficiency of the 

designed monitoring method. In the next section, we will 

review the relevant literature. 

 

2. Literature Review  

The economic design of control charts for the first time is 

presented by Duncan (1971) when he proposed the design 

to select the parameters of the X-bar chart. Later, Duncan 

(1971) presented another model to be used in situations 

with multi-assignable causes. Saniga (1989) introduced a 
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statistically constrained economic model (called 

economic-statistical) by adding two constraints (Type-I 

and Type-II errors) on Duncan’s model. Elsayed and 

Chen (1994) developed an economic design for X-bar 

charts based on quadratic loss function. Costa and Rahim 

(2001) employing the Markov chain approach developed 

an economic model for X-bar charts with variable 

parameters. Chou et al. (2002) proposed the statistically 

constrained economic design for multivariate control 

charts by applying quality loss function. Chen & Yang 

(2002) introduced an economic design for the C-bar 

control chart with multi-assignable causes. Serel and 

Moskowitz (2006) used the Taguchi loss function for 

improving the Lorenzen-Vance cost model and 

monitoring the mean and the variance of a process 

simultaneously. Yang et al. (2012) applied a meta-

heuristic algorithm to find the optimal design of X-bar 

and S control chart in a multi-objective environment. 

Control charts along with other tools are appropriate 

methods for implementing root cause analysis (RCA) in 

industries (Ershadi et al., 2018). Saghaei et al. (2014) 

proposed an economical design for EWMA chart using a 

genetic algorithm.  

 In contrast with economic and statistically constrained 

economic designs of classical control charts, there are a 

few works in the literature on the design of linear profiles. 

Noorossana et al. (2014) proposed both economic and 

statistically constrained economic designs of simple linear 

profiles. Ershadi et al (2015) developed an economic 

design model for a simple linear profile with variable 

sampling interval in Phase II. Ershadi et al. (2016) worked 

on design of simple linear profiles in adaptive 

environment.  

In order to summarize the works reviewed on the 

economic-statistical designs, they are first categorized in 

four main groups. The first group involves published 

papers in the recent two decades that focus on the single-

objective design of control charts considering an 

economic model. The works such as Barzinpour et al. 

(2013), Saniga (1989), Chou et al. (2008), Niaki et al. 

(2011), Saghaei et al. (2014), and Niaki and Ershadi 

(2012) are placed in this group. The second group is 

concerned with the multi-objective economic/statistical 

designs of control charts that start in 2012. The papers by 

Yang et al. (2011), Safaei et al. (2012), and Tavana et al. 

(2016) are among these works. The third group contains 

studies such as Noorossana et al. (2014) that were 

conducted on developing a single-objective optimization 

model for linear profiles. The fourth group is devoted to 

the studies focused on the multi-objective designs of 

linear profiles, in which no works have been conducted so 

far in the literature and the current research falls within it. 

In other words, the current research is performed with the 

aim of presenting a multiple objective optimization model 

for designing of linear profiles. Table 1 presents these 

groups and shows the research gaps. 

Based on the above review, while many works are 

conducted on the statistically constrained economic 

design of charts, a model with multiple objectives is 

proposed for the first time in this paper to obtain the 

parameters of a simple linear profile. In addition to the 

above-mentioned contribution, the Lorenzen-Vance 

function is extended based on the Taguchi's loss function 

to incorporate all costs of implementing linear profiles 

described in Section 4. 

In this paper, a new model is developed to improve the 

efficiency of an economic-statistical design of simple 

linear profiles based on the DEA approach that 

incorporates hidden implementation costs identified 

through the Taguchi loss function. The proposed model is 

solved by a combination of MOPSO and RSM. In what 

comes in the next section, some necessary backgrounds 

on simple linear profiles, cost functions, and DEA are 

provided. 
 

  Table1 

   Relevant studies in the design of control charts and profiles using meta-heuristics 

 

Previous Studies 

Control charts Linear Profiles 

Single objective Multi-Objective Single objective Multi-objective 

Barzinpour et al. (2013) PSO    

Saniga (1989)  GA    

Chou & Cheng (2008) GA    

Niaki et al. (2011) PSO    

Saghaei et al. (2014) GA    

Niaki & Ershadi (2012) GA    

Niaki & Ershadi (2012) ACO    

Safaei et al (2012)  NSGA-II   

Yang et al (2012)  MOPSO   

Tavana et al. (2016)  NSGA-III /MOPSO   

Noorossana et al. (2014)   GA  

Current research    DEA/MOPSO 

 

3. Background 

As stated above, this section provides some required 

background on simple linear profiles, the Lorenzen-Vance 

implementation cost functions, and data envelopment 

analysis. 

 

3.1. Simple linear profile  
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Suppose the random variable   is the output of a process 

having a linear relationship with an independent variable 

  as 

 

                      
     

(1) 

   

where    and    are, respectively, the intercept and slope 

parameters and    and    define the range of  . The 

relationship defined in (1) is called a simple linear profile 

(Keramatpour et al., 2014). In Eq. (1), the   s are 

normally and independently distributed variables with 

mean 0 and variance   . To detect any change in the 

standard deviation or the average of the process, a sample 

  with   set points            selected in the range 
[      ] is first taken from the process to observe 

             . Then, assuming a linear relationship 

among the points in sample   

(      ) (      )   (      ), the least squares 

estimates for parameters    and    are: 

 

    
      

   
   ;         ̅      ̅,  (2) 

where  ̅      ̅ are the sample means of   and 

  and 
 

 

    ∑      ̅  
 

   

          

 ∑        ̅ 

 

   

  

(3) 

             
Based on equations (2) and (3), the sample statistics     

and     have the means    and    and normally 

distributed with the variances 

 

  
          ̅    

          ̅   ;   

  
       

    (4) 

    

Assuming the predicted value of   as  ̅           , 

the residual     is the deviation of the observed and 

predicted values as 

 

                 .  (5) 

The independent random variables    s are normally 

distributed with mean 0 and variance    estimated by 

 

            ∑   
 

 

   

  (6) 

      

  

 For an in-control process mean, the residuals 

must be in control. One way to check is the use of the 

EWMA chart on the average residuals which is proposed 

by Kang and Albin (2000). 

 

 ̅  
∑    

 
   

 
 (7) 

       

In this case, the     sample statistic is the weighted 

average of the     average residual and the previous 

average residual defined in Eq. (8). 

 

     ̅            (8) 

      

In Eq. (8),      0 is the weighting constant and 

    . However, in some cases, the average of the initial 

data  ̅ is used as the starting point, i.e.     ̅. 

Furthermore, the upper control limit       and the lower 

control limit       of the EWMA chart are 
 

      √
 

      
          

    √
 

      
 

(9) 

 

   

An out-of-control signal is prompted when    is either less 

than     or it is greater than    .  
 To monitor the variance of the process, the range 

(R) chart is constructed using the control limits defined in 

Eq. (10). 
 

                       
           

(10) 

  

The coefficients    and    in Eq. (10) are proportional to 

  and are determined by corresponding tables 

(Montgomery, 2005). Here, the parameter   is related to 

the sensitivity of the EWMA chart and is determined by 

the economic-statistical design, developed later in Section 

4. 
The simulation method utilized in Kang and Albin (2000) 

is employed in this paper, where the above derivations are 

used to compute the average run lengths (ARL's). In the 

following sub-section, the Lorenzen-Vance cost function 

is introduced to determine the cost of implementing linear 

profiles. 

 

3.2. The Lorenzen-Vance cost function 

Lorenzen & Vance (1986) proposed a general model for 

the implementation costs of different types of control 

charts. Since then many researchers used this model for 

the economic design of their control charts. For example 

Molnau et al. (2001) presented an model for designing a 

MEWMA chart and also Niaki and Ershadi (2012) 

developed a model to design a MEWMA chart in which 

the Markov chain approach was employed for ARL 

calculations. As the Lorenzen-Vance model has been the 

only cost function used to design EWMA charts and 

noting its flexibility in the economic-statistical design of 

control charts, it is selected in this paper for the 

economic-statistical design of simple linear profiles.  
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 The expected implementation cost according to the Lorenzen-Vance function is as follows. 

 

           
{
  

 
                             

  
    

  } 
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(11) 
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where the parameters are: 

   is the average nonconformities cost per hour while the 

process is on in-control state. 

   is the average nonconformities cost per hour while the 

process is on out-of-control state. 

  is the average duration between the time an assignable 

cause occurs and the last previous sample point. It is 

obtained as 

 

τ  
∫             

      

  

∫       
      

  

 
            

         
 

(12) 

  is the required time for sampling and depicting an item. 

     is the average run length while the process is on in-

control state. 

     is the average run length when the process is on 

out-of-control state. 

   is the required time to search for the cause of 

assignable condition when the chart signals a false alarm. 

   is the mean time to identify an assignable cause 

   is the mean time to correct and modify the process 

      in situation the process is stopped while 

identifying assignable cause and is equal to 1 if it is 

progressed during the search. 

      in situation the process is stopped while 

improving and is set equal to 1 if it is progressed 

while correcting or repairing. 

  is the average number of samples when the process is on 

in-control state. It is calculated by 

 

  
        

[          ]
 (13) 

    

  is the established cost of a false alarm. 

  is the identifying and modifying cost for an assignable 

cause 

   is the fixed sampling cost of each item. 

  is the variable sampling cost of each item. 

 As some hidden implementation costs in the 

above function may not be properly considered, we will 

estimate it with the aid of the Taguchi loss function 

introduced in Section 4.  

 

3.3. Data envelopment analysis  

DEA is a methodology for evaluating multiple decision-

making units (DMUs) in efficiency perspective when the 

production process establishes an arrangement of multiple 

outputs and inputs (Azizi and Kazemi Matin, 2018). The 

efficiency indicator which is generally used by DEA is as 

follows 

 

      
                           

                          

 
∑         

 
   

∑         
 
   

 

(14) 

     

where  

      is the efficiency measure of DMUs in design  .  

      is the     value of output   in design  ; 

      is the     value of input   in design  ; 

    is the most affirmative weights determined to design   

for output  ; 

    is the most affirmative weights determined to design   

for input  . 

 In the stage of calculating the relative efficiency, 

it is required to determine evaluation method of weights 

(Yaghoubi et al., 2016). There should be a common set of 

weights for all decision-making units. In the real world, 

however, determining these weights for each DMU is a 

difficult task. Therefore, DEA proposes a solution to this 

problem based on the efficiency measure.  

 Charnes et al. (1978) proposed the first DEA 

model called CCR that efficiency is obtained by dividing 

the weight composition of the outputs into the weight 

composition of the inputs in the fractional planning model 

as follows. 

    ∑     

 

   

∑     

 

   

⁄  
 

     (15) 
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       ;        

 

 

 

Charnes & Cooper (1988) converted the CCR fractional 

programming model to CCR linear programming model 

by applying the limitation ∑         
   . In this model, 

the efficiency of each unit is assumed to be constant on a 

scale. The CCR linear programming model is as follows. 

 

    ∑     

 

   

 
 

∑      
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 (16) 

      

∑       

 

   

 
 

       ;        

 

 

 

In the next section, an extension of the cost model is first 

given for a statistically constrained economic design of 

simple linear profiles using the Taguchi's loss function.  

 

4. An Extension of the Lorenzen-Vance Function 

As stated in the previous section, the presented cost 

function is based on the internal cost of control charts or 

profiles and do not include the external cost of 

implementation. Customer needs and requirements have 

main impact on the forced costs in any organization and 

appropriately need to be considered in organizational 

accounting (Ershadi and Omidvar, 2018). Taguchi and 

Wu (1979) developed the quality of an item as a loss 

occurred since the time it is introduced to the market, 

based on which the average total loss is obtained as an 

indicator of the performance. Safaei et al. (2012) 

presented a multi-objective statistically constrained 

economic model for Shewhart control charts by 

considering the Taguchi's loss function. Serel (2009) used 

this function to estimate two parameters C0 and C1 and 

showed that if   is the target value of any quality 

characteristic for the monitored and   is the coefficient in 

Taguchi loss when the process is in control, then   is 

equal to mean of the quality characteristic    . Thus, the 

average quality cost per unit of the product when the 

process is on in-control state      is as follows 

 

    [  
         ]  (17) 

 

      

   

However, when the process is in out-of-control state, the 

process mean will change from    to    and the expected 

cost per each item      becomes 

 

    [    
              

 

           ] 
(18) 

   

In Eq. (18),   is the ratio of the standard deviation in out-

of-control state to standard deviation on in-control state, 

which is calculated as follows. 

 

  
  

  
 (19) 

   

In addition, the Taguchi loss coefficient   is a fixed 

number that depends on the cost of rework, waste, and the 

size of tolerance characteristic. It can be estimated by  

 

  
 

      
 (20) 

 

Assuming   as the units which are produced per hour, the 

average loss per hour when the process is on in-control 

state is calculated as follows. 

 

       (21) 

      

In addition, the average loss per hour when the process is 

on out-of-control state is obtained by 

 

       (22) 

   

Replacing the parameters    and    in the presented cost 

function, the average total loss       is calculated. The 

next sub-section provides the total model of this study.  

 

 4.1. An efficient economic-statistical model  

Based on the backgrounds provided in Section 3 and the 

proposed extended cost function in Section 4, an efficient 

statistically constrained economic model to design 

profiles is formulated as follows. 

 

                 

         

         

         

         

        

    

                     

                     

                 
                                         

 

(23) 

 

The variables used in (23) are defined as shown below. 

  : is the number of the set points; 

  : is the sampling interval; 

 : is the rate to assess the average run lengths; 

  : is the weighting variable in the applied EWMA-R 

chart. 

    : is the lower limit on the     when the process is 

in-control;  

    : is the upper limit on the     when the process is 

out-of-control;  
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    : is the average time to signal when the process is in 

control; 

    : is the average time to signal when the process is out 

of control; 

            : is the average total loss. 

 Figure 1 shows a general flowchart to optimize 

and validate Model (23).  

 

 
Fig.1. The general structure to optimize Model (23) 

 

In the next section, by employing a meta-heuristic 

algorithm near-optimum solution of the problem at hand 

is found and to aid finding an efficient design of simple 

linear profiles. 

 

5. A Meta-Heuristic Solution Algorithm 

There are several meta-heuristic algorithms to solve the 

extended Lorenzen and Vance function introduced in 

Section 4. The goal of these algorithms is to efficiently 

investigate feasible region to find optimum results 

(Sadigh et al., 2010). Liu et al. (2017) optimized the 

parameters of a modified MEWMA chart using a PSO 

algorithm, presented by Kennedy and Eberhart (1997). 

Due to the ability, flexibility, and high speed of these 

algorithms, they have been utilized in many studies to 

solve various types of complex optimization problems. 

Niaki et al. (2011) compared the performances of four 

meta-heuristic algorithms when they were used for a 

statistically constrained economic design of charts and 

concluded that PSO is the best for solving their problem.  

As such, a MOPSO is utilized in the next sub-section in 

order to solve the complex optimization problem at hand.   

  

 Multi-objective particle swarm optimization (MOPSO) 

In PSO, each solution (named particle)    is assumed as a 

member in the swarm of   particles are established with a 

velocity vector which specifies its location at the 

consecutive time step. The velocities for each particle are 

revised to fly towards two different paths: their personal 

best,   , to benefit and select the best results found until 

now, and the global best,  , which is the best solution 

obtained until now by the total swarm. A typical multi-

objective PSO (MOPSO) involves several objectives to be 

optimized simultaneously. Coello et al. (2004) proposed 

this algorithm and Tavana et al. (2016) used MOPSO and 

non-dominated sorting genetic algorithm II (NSGA-II) to 

solve involved in the statistical constrained economic 

design of control charts.   

The steps of the MOPSO algorithm are summarized as 

follows: 

1. Set starting value for the population     

2. Set starting value for the speed of each particle 

3. Appraise each particle in     

4. Save the locations of the particles that show non-

dominated vectors in     

5. Generate hypercubes of the search space explored so 

far  

6. Set starting value for the memory of each particle 

7. Do the following steps until the maximum number of 

cycles is reached: 

a. Compute the speed of each particle  

b. Compute the new positions adding the seed 

obtained by the previous step as 

 

   [ ]
    [ ]
    [ ] 

(24) 

     

c. Maintain the particles within the search 

space in case they go beyond their 

boundaries.  

d. Evaluate each of the particles 

e. Update the contents with the geographical 

representation of the particles 

f. When the current position of the particle is 

better than the position contained in its 

memory, the particle's position is updated 

using 

 

     [ ]
    [ ] 

(25) 

 

g. Increment the loop counter 

8. End While 

In the next section, a numerical example is provided to 

solve the statistically constrained economic design 

problem at hand. 

 

 

6. A Numerical Example from a Real-World 

Application 

In this section, the proposed model is applied to a case 

which is studied by Kang and Albin (2016). They inspired 
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their example by the first principles in physics. The 

semiconductor manufacturing problem that they 

addressed takes place during the etch step. If a mass flow 

controller (MFC) is in-control then the measured pressure 

  in the chamber is approximately a linear function of the 

set point of flow ( ). In this case, the quality characteristic 

  has a linear relationship with the independent variable   

through         which must be monitored in Phase II 

when a shift of size 0.2 on the slope is taken place. Here, 

the aim is to implement an economic simple linear profile 

with good statistical properties. In other words, the lower 

limit for ARL0 is considered 200 and a higher limit for 

ARL1 is assumed 10. It is also assumed that the parameters 

of the Lorenzen-Vance cost function have been estimated 

as   

                                    
                      
      

    , K= 0.1 P=200,    
In addition, the parameters required to obtain the expected 

quality cost per unit in the Taguchi quadratic loss function 

when the process is in control      and when the process 

is out of control      are                 
      

                  
      . Here, K must be 

obtained using Eq. (20) using A as the cost of rework or 

scrap for each unit of the product. Then, using Eqs. (17) 

and (18) we estimate         and          by using 

Eq(17), and Eq(18). As a result,                 

and                  using Eqs. (21) and (22), 

respectively.  

The main parameters of the MOPSO algorithm as are 

described in the previous section are P1 which is personal 

learning coefficient and P2 which is the global learning 

coefficient and V (inertia weight). The other parameters 

of the MOPSO algorithm are              . 

In the next sub-section, the parameters of MOPSO are 

tuned and the results are presented.  

 

6.1. Determining the optimal parameters of the MOPSO 

algorithm 

There are three main parameters involved in MOPSO 

which should be tuned before starting to solve a typical 

multi-objective optimization problem. These parameters 

are tuned in this section based on the steepest descent 

method described in Montgomery (2005). The main three 

parameters of MOPSO are the personal learning 

coefficient P1, the global learning coefficient P2, and the 

weight of the inertia V. For each of these parameters, a 

low, a medium, and a high level is first assumed. Next, 

the effect of each of these parameters on the 

implementation cost is analyzed using the analysis of 

variance (ANOVA) method applied on a factorial design. 

The response variable is considered the implementation 

cost obtained by the Lorenzen-Vance function. Table 2 

shows the considered parameter levels of the MOPSO 

algorithm. 

 

 
                                             Table 2 

             The parameter levels of the MOPSO algorithm 

Parameters High Medium Low 

P1 2 1.5 1 

P2 2 1.5 1 

V 2 1.5 1 

 

Table 3 presents the responses obtained based on the 

parameter levels shown in Table 2 in a 23 factorial design, 

where -1 and 1 refer respectively to the low and the high 

level of a parameter.  

 

         Table 3  

         Responses in a factorial design of the economic-statistical model 

Factor I P1 P2 V P2*W P1*W P1*P2 P1*P2*V Response 

I 1 -1 -1 -1 1 1 1 -1 12.15 

P1 1 1 -1 -1 1 -1 -1 1 12.45 

P2 1 -1 1 -1 -1 1 -1 1 12.40 

V 1 1 1 -1 -1 -1 1 -1 12.33 

P1*P2 1 -1 -1 1 -1 -1 1 1 12.06 

P1*V 1 1 -1 1 -1 1 -1 -1 11.99 

P2*V 1 -1 1 1 1 -1 -1 -1 11.80 

P1*P2*V 1 1 1 1 1 1 1 1 11.68 

 

From the above replicates, the average of the observed 

responses at factorial points is   ̅̅ ̅       . As there is 

one replicate at each factorial point, in order to estimate 

the variance of the error term as well as to investigate the 

curvature of the response function, 4 experiments are 

conducted at the center point, where the levels of all three 

parameters are chosen to be medium, i.e. at the 

              point. The responses obtained at this point 

are 12.09, 12.34, 12.43, and 12.27 with an average of 

  ̅̅ ̅        . Consequently, the sum of squares of the 

pure quadratic (SSPQ) term is calculated using Eq. (26). 
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       ̅    ̅̅̅ 

 

     

 
                  

   
       

(26) 

The sum of squared error based on the results at the center 

point is             This eventually results in the 

ANOVA table shown in Table 4. 

 
                                 Table 4 

                                     Analysis of variance on the parameters of the MOPSO algorithm 

Source of 

variation 
Sum of squares DF 

Mean of 

squares 
F* 

P1 0.0002 1 0.0002 
0.0033 

 

P2 
0.0242 

 
1 

0.0242 

 

0.3421 

 

V 0.4013 

 
1 

0.4013 

 

5.6594 

 

P1*P2 
0.0228 

 
1 

0.0228 

 

0.3213 

 

 

P1*V 0.0220 

 
1 

0.0220 

 

0.3105 

 

 

P2*V 0.0607 

 
1 

0.0607 

 

0.8562 

 

 

P1*P2*V 0.0120 

 
1 

0.0120 

 

0.1689 

 

PQ 0.0818 1 0.0818 
1.1531 

 

Error 0.2127 3 0.0709  

 

As              , not only there is no curvature in the 

response function, but also the only significant parameter 

is   with an F-statistic equal to 5.6594. Therefore, the 

linear relationship is estimated in Eq. (27).  

 

 ̂                (27) 

 

Employing the steepest descent method, Δ = (0,0,0.5) is 

chosen in each step to tune the parameters. Table 5 shows 

the results. Consequently, the tuned parameters of the 

MOPSO algorithm are                       
The optimal parameters of the economic-statistical model, 

obtained by the application of the parameter-tuned 

MOPSO are shown in Table 6, where only the cost 

objective function, i.e. ATL is considered. 

  
                                                 Table 5 

                                                       Responses for different parameters along the regression line 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                  Table 6 

                                  The optimal solution generated by the MOPSO with tuned parameters 

L h r n ATS ARL1 ARL0 ATL 

11.708 1.311 0.616 2 280.824 3.371 214.204 11.771 

Response 
Parameters 

Step 
V P2 P1 

12.1089 1 1 1 Origin 

 0.5 0 0   
12.0410 1.5 1 1 Origin+  

11.7712 2 1 1 Origin+   

11.9438 2.5 1 1 Origin+   

11.8200 3 1 1           

11.8003 3.5 1 1 Origin+   

11.8201 4 1 1 Origin+   
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In the next subsection, an analysis is performed to 

compare the performance of the proposed method with the 

ones of some other competing works.  

   

6.2. A comparison analysis 

As is explained at the end of Section 2, this paper 

proposes a multi-objective optimization model for the 

economic-statistical design of linear profiles for the first 

time. All previous authors in the scope of economic-

statistical design of control charts or linear profiles 

validated their models using an example. For instance, 

Chou and Cheng (2006), Noorossana et al. (2014) and 

Niaki & Ershadi (2011) validated their proposed 

optimization algorithms using an experimental design 

approach. In addition, Tavana et al. (2016), Niaki et al. 

(2012) and Barzinpour et al. (2013) compared their results 

to ones using a similar meta-heuristic solution algorithm. 

In this paper, in addition to using an experimental design 

for the validation of the proposed model and the solution 

algorithm, the results obtained by using the MOPSO is 

compared to the ones obtained by Niaki et al. (2011) 

using a PSO algorithm which solved a single-objective 

optimization problem. The comparison results are shown 

in Table 7. The utilization of the MOPSO algorithm of the 

current work leads to the total cost of 11.771, while the 

single- objective model after the application of the PSO 

results in the total cost of 15.63. This comparison shows 

that the multi-objective model achieves a better cost in 

comparison to the single-objective approach.  

 

                  Table 7 

                    The comparison of the single-objective to the multi-objective optimization model 

Single-objective model Multi-objective model 

L h r n Cost L h r n Cost 

13.88 1.52 0.91 7 15.63 11.708 1.311 0.616 2 11.771 

 

In the next subsection, the efficiency of the proposed 

multi-objective optimization model is improved using 

DEA, when the parameter-tuned MOPSO is employed.  

 

6.3. Efficiency improvement of the model 

The efficiency is obtained by dividing the weighted 

composition of the outputs by the weighted composition 

of the inputs. Hence, to improve the efficiency, the 

weighted sum of the outputs must be maximized and the 

weighted sum of the inputs should be minimized. The 

inputs, the DMU, and the outputs involved in the 

economic-statistical design of simple linear profiles are 

shown in Figure 2.  

 

 
 

Fig. 2. Inputs and outputs for each DMU in the economic-statistical model 
 

 

The inputs and the outputs of 43 DMUs are shown in 

Table 8 based on solving the multi-objective economic-

statistical design using the parameter-tuned MOPSO. 

Each of these DMUs refers to a Pareto point obtained. 

In order to obtain the efficiency of each DMU in Table 8, 

the method of conquering units is used by comparisons 

between the inputs and the outputs of the units. The 

outputs which are less than those outputs whose values 

are larger are recalled, and the inputs whose values are 

larger are recalled by inputs with less values. Hence, 

efficient units are identified by eliminating some of the 

DMUs. The use of the method of conquering units by 

other units is appropriate for issues with low DMUs. 

Therefore, the linear programming model is used here to 

obtain the optimal efficiency of each DMU. As an 

example, the linear programming model of the first DMU 

is as follows 

Max Z1=237.6339u1+1325.664u2 

     
                    

237.6339u1+1325.664u2-13.1259v1-2.804v2    

243.7553u1+1631.064u2-13.002v1-2.835v2    

. 

229.6277u1+767.752u2-12.4487v1-3.8497v2    

              
To obtain the efficiencies of the other 42 DMUs, 42 such 

models that are different in the target function and the first 

limitation are to be solved. The optimal efficiencies of all 

DMUs are presented in Table 9. 

 

Table 8 

The inputs and outputs of 43 DMUs 

Unit 
Outputs Inputs 

Unit 
Outputs Inputs 

ATS ARL0 ARL1 ATL ATS ARL0 ARL1 ATL 

ARL0 DMU 

S=(n,r,h,l) 

ARL1 

ATL 
ATS 
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1 1325.664 237.634 2.804 13.126 23 1331.105 245.972 2.904 12.770 

2 1631.064 243.755 2.835 13.002 24 746.819 228.490 3.623 12.521 

3 2042.049 228.614 2.812 13.741 25 1336.026 229.560 2.852 12.870 

4 1368.003 227.564 2.938 12.949 26 534.393 247.886 7.020 12.912 

5 694.928 237.217 3.420 12.476 27 2428.283 244.528 3.907 14.683 

6 987.083 236.291 3.347 12.587 28 1633.479 248.816 2.852 13.161 

7 2178.441 242.049 3.028 13.818 29 2323.727 232.373 3.313 14.264 

8 2293.737 247.143 3.2871 14.164 30 1070.846 249.231 4.851 13.336 

9 1068.682 206.198 2.806 12.68 31 829.428 206.603 2.924 12.350 

10 280.822 214.204 3.371 11.771 32 1869.783 236.176 2.901 13.437 

11 2045.308 249.949 5.749 15.369 33 1849.473 249.861 2.990 13.442 

12 906.878 212.598 2.960 12.464 34 1233.799 249.944 5.070 13.716 

13 2163.596 248.929 5.885 15.633 35 2488.093 248.809 4.269 15.027 

14 2015.993 249.934 3.178 13.827 36 1549.004 243.137 2.946 12.968 

15 859.051 214.763 2.844 12.646 37 1523.795 247.598 2.999 13.025 

16 1060.959 233.872 2.897 12.617 38 2236.396 247.377 3.935 14.559 

17 2220.276 239.890 2.872 13.847 39 2142.553 249.761 5.926 15.601 

18 1731.653 244.805 3.083 13.422 40 1640.752 249.131 2.882 14.286 

19 2248.453 249.828 5.762 15.670 41 767.255 229.628 3.850 12.449 

20 2141.567 245.294 2.855 13.665 42 2221.860 247.832 3.040 13.850 

21 834.477 220.307 2.939 12.519 43 2010.943 203.675 2.802 13.856 

22 2260.614 245.223 3.123 13.992  

 
                                                                  Table 9 

                                                                          The efficiencies of DMUs 

Unit Z* Unit Z* 

1 0.43 23 1.00 

2 0.38 24 0.67 

3 0.56 25 0.91 

4 1.00 26 0.78 

5 0.83 27 0.54 

6 0.47 28 0.76 

7 0.65 29 0.75 

8 0.46 30 0.81 

9 1.00 31 0.57 

10 0.57 32 0.81 

11 0.85 33 0.91 

12 0.61 34 1.00 

13 0.39 35 0.65 

14 0.59 36 0.74 

15 0.87 37 0.67 

16 0.54 38 0.89 

17 0.39 39 1.00 

18 0.93 40 0.38 

19 0.82 41 0.75 

20 1.00 42 0.59 

21 0.71 43 0.47 

22 0.81   

 

In Table 10, the DMUs whose Z-values are 1.00 are 

effective units and the ones whose Z-values are greater 

than or equal to 0.9 are relatively efficient. The units with 

Z-values less than 0.9 are inefficient units. Table 10 

summarizes the inputs and the outputs of the efficient and 

relatively efficient DMUs. 
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In the next section, some sensitivity analyses are 

performed on the main parameters of the proposed 

economic-statistical model. 

 
               Table 10 

                 The inputs and the output variables of the efficient and relatively efficient DMUs 

Uni

t 
n R h L ATL ARL1 ARL0 ATS 

efficienc

y 
 

4 6 0.552 6.012 9.383 
12.94

9 
2.938 

227.56

4 

1368.0

03 
1.00 Efficient 

9 7 0.818 5.183 13.681 
12.68

0 
2.806 

206.19

8 

1068.6

82 
1.00 Efficient 

20 11 0.417 8.731 13.401 
13.66

5 
2.855 

245.29

4 

2141.5

67 
1.00 Efficient 

23 6 0.484 5.412 11.152 
12.77

0 
2.904 

245.97

2 

1331.1

05 
1.00 Efficient 

34 7 0.571 4.936 13.723 
13.71

6 
5.070 

249.94

4 

1233.7

99 
1.00 Efficient 

39 11 0.723 8.578 15.000 
15.60

1 
5.926 

249.76

1 

2142.5

53 
1.00 Efficient 

25 7 0.635 5.820 10.614 
12.87

0 
2.852 

229.55

8 

1336.0

26 
0.93 

Relatively 

efficient 

33 11 0.570 7.402 12.936 
13.44

2 
2.990 

249.86

1 

1849.4

73 
0.91 

Relatively 

efficient 

 

6.3. Sensitivity analyses  

As many parameters of the Lorenzen-Vance cost need to 

be estimated in order to design a proper multi-objective 

economic-statistical design of simple linear profiles, in 

this section the effects of under-estimation and over-

estimation of some of the parameters on the design are 

investigated in some sensitivity analyses. Tables 11-14 

show the optimal designs when the fixed cost of sampling 
   , the variable cost of sampling    , the plotting cost of 

each profile    , and the cost of identifying and modifying 

an assignable cause     are changed. 

 

 
                   Table 11 

                    The effect of the fixed cost of sampling on the design 

 ATL ARL1 ARL0 ATS n r h l 

a=5 13.437 2.836 248.644 1106.503 4 0.642 4.450 8.889 

a=0.05 11.280 3.089 202.232 216.651 2 0.242 1.071 10.351 

a=0.5 12.445 2.895 238.060 950.791 2 0.580 3.994 10.498 

 

                   Table 12 

                    The effect of the variable cost of sampling on the design 

 ATL ARL1 ARL0 ATS n r h l 

b=0.1 11.267 3.118 247.441 325.678 13 0.427 1.316 12.000 

b=0.01 12.088 2.884 237.678 791.874 9 0.373 3.332 8.864 

b=0.001 11.593 2.840 232.300 347.035 8 0.459 1.494 9.309 

  
                    

 

                    Table 13 

                   The effect of the plotting cost of each profile on the design 

 ATL ARL1 ARL0 ATS n r h l 

e=0.05 12.712 2.940 220.634 1066.030 9 0.590 4.831 10.248 

e=0.5 13.090 3.600 230.280 739.620 10 0.563 3.212 12.451 

e=5 160.762 2.961 235.509 1375.030 2 0.629 5.838 10.862 
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                   Table14 

                   The effect of W on the design 

 
ATL ARL1 ARL0 ATS n r h l 

W=20 11.692 2.811 231.056 386.586 2 0.271 1.673 11.804 

W=150 13.943 4.108 238.008 298.652 12 0.120 1.255 10.019 

W=250 13.274 2.925 244.199 754.459 8 0.312 3.089 10.967 

 
The results in Tables 11-14 show that while the proposed 

model is robust on some parameters such as the cost of 

identifying and modifying an assignable cause, the fixed 

cost of each sample, and the variable cost of sampling, the 

plotting cost of each profile has a significant effect on the 

design. Hence, the estimation of this parameter is an 

important task. 

 

7. Conclusions and Recommendations for Future 

Research 

In this paper, a multi-objective economic-statistical design 

of simple linear profiles was proposed. This means that 

the design parameters of a profile can be obtained in a 

way the total implementation cost is minimized while 

desired statistical properties are achieved. The objectives 

of the problem included minimizing the implementation 

cost, maximizing the average run length when the process 

is in control, maximizing the average time to signal, and 

minimizing the average run length when the process is out 

of control. While an EWMA-R scheme was employed for 

statistical monitoring of the profile, the Lorenzen-Vance 

cost function was used to consider hidden implementation 

costs estimated by the Taguchi loss function. A MOPSO 

algorithm, for which its parameters were tuned using 

RSM was utilized to solve the complex multi-objective 

optimization problem. In addition, the concept of DEA 

was used to obtain the optimal effective solutions 

generated by the MOPSO. Finally, some sensitivity 

analyses were conducted on the main parameters of the 

Lorenzen-Vance cost function. The results showed that 

while the design demonstrated a robust performance on 

some parameters, the plotting cost of each profile had a 

significant effect on the design. This implied that care 

must be taken in order to estimate this parameter. 
In the proposed model, only one type of assignable cause 

was assumed. A model that can accommodate several 

types of assignable causes can be considered in the future. 

In addition, the model can be extended to design other 

types of profiles such as multivariate and non-linear 

profiles. The use of quality function deployment is also 

recommended in the future in order to estimate the costs. 

Moreover, some other decision-making methods can be 

used to rank the Pareto optimal solutions. Finally, 

adaptive modes can be added to the designed model. 
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