Switching H2/H∞ Controller Design for Linear Singular Perturbation Systems
Subject Areas : Journal of Computer & Robotics
1 - Department of Electrical and Computer Engineering, Islamic Azad University, Qazvin Branch, Qazvin, Iran Department of Computer Science and Electrical Engineering, Control Engineering Group, Luleå University of Technology, Luleå, Sweden
Keywords:
Abstract :
[1] C. Scherer, P. Gahinet and M. Chilali, Multiobjective
outputfeedback control via LMI optimization, IEEE Transaction on
Automatic Control, vol.42, no.7, pp.896-911, 1997.
[2] C. Yi Chen, Hybrid controller design for a mechanical transmission system with variable compliance and uncertainties, International Journal of Innovative Computing, Information and Control, vol.4, no.8, pp.1821-1834, 2008.
[3] Garcia, G., J. Daafouz and J. Bernussou, H2 guaranteed cost control for singularly perturbed uncertain systems, IEEE Trans. on Automatic Control, vol. 43, no. 9, pp.1323-1328, 1998.
[4] Garcia, G., J. Daafouz and J. Bernussou, A LMI solution in the H2 optimal problem for singularly perturbed systems, Proceedings of the American Control Conference, pp. 550-554, Philadelphia, Pennsylvania, June 1998.
[5] E. Gershona, U. Shaked, Static H2 and H∞ output-feedback of discrete-time LTI systems with state multiplicative noise, Systems and Control Letters, vol.55, pp.232-239, 2006.
[6] M. C. de Oliveira, J. C. Geromel, J. Bernussou, An LMI optimization approach to multiobjective controller design for discrete- time system, Proc. of the 38th IEEE Conf. on Decision & Control, Phoenix, Arizona, pp.3611-3616, 1999.
[7] N. Essounbouli, N. Manamanni, A. Hamzaoui, J. Zaytoon, Synthesis of switching controllers: a fuzzy supervisor approach, Nonlinear Analysis, vol.65, pp.1689-1704, 2006.
[8] Kokotovic, P.V., H.K. Khalil, and J. O'Reilly, Singular perturbation methods in control: analysis and design, New York, Academic, 1986.
[9] P. Khargonekar, M. A. Rotea, Mixed H2/H∞ control: a convex optimization approach, IEEE Trans. on Automatic Control, vol.39, pp.824-837, 1991.
[10] R. A. DeCarlo, S. H. Zak, G.P. Matthews, Variable structure control of non-linear multivariable systems: A tutorial, Proc. of the IEEE Conf. on Decision & Control, pp.212-232, 1988.
[11] V. Dragan, T. Morozan, The linear quadratic optimization problem for a class of discrete-time stochastic linear systems, International Journal of Innovative, Computing, Information and Control, vol.4, no.9, pp.2127-2137, 2008.
[12] Pan, Z. and T. Basar, H∞-Optimal control for singularly perturbed systems-Part I:Perfect state measurement, Automatica, vol. 29, no. 2, pp. 401-403, 1993.
[13] Tan, W., T. Leung and Q. Tu, H∞ control for singularly perturbed systems, Automatica, vol. 34, no. 2, pp. 255-260, 1998.
[14] Peres, P.L.D and J.C. Gromel, An alternate numerical solution to the linear quadrautic problem, IEEE Trans. on Automatic Control, vol. 39, no. 1, pp. 198-202, 1994.
[15] Yan Li, J. L. Wang and G. H. Yang, Sub-optimal linear quadrautic control for singularly perturbed systems, Proc. of the 40th IEEE Conf. on Decision and Control, pp. 3698-3703, 2001.
[16] Yan Li, Y. Jiao and X. Wang, Suboptimal H2 static output feedback control for singularly perturbed systems, Proc. of the IEEE Int. Conf. on Automation and Logistics, pp. 2796-2800, 2007.