Vibration Attenuation of Nonlinear Hysteretic Structures with Fully Unknown Parameters
Subject Areas : journal of Artificial Intelligence in Electrical EngineeringSaheleh Khodabakhshi 1 , Mahdi Baradaran-nia 2
1 - 1Department of Electrical Engineering. Ahar Branch, Islamic Azad University, Ahar, Iran
2 - Department of Control Engineering, Faculty of Electrical and Computer Engineering,
University of Tabriz, , Tabriz, Iran
Keywords:
Abstract :
[1] Baradaran-nia, M., Alizadeh, G., Khanmohammadi,
S., and FarahmandAzar, B., (2013). “Backsteppingbased
lyapunov redesign control of hysteretic single
degree-of-freedom structural systems,” Nonlinear
Dynamics, vol. 73, no. 1-2, pp. 1165–1186.
[2] Baradaran-nia, M., Alizadeh, G., Khanmohammadi,
S., and Farahmand Azar, B., (2012). “Optimal
sliding mode control of single degree-of-freedom
hysteretic structural system,” Communications in
Nonlinear Science and Numerical Simulation, vol.
17, no. 11, pp. 4455–4466.
[3] Bouc, R., (1971). “A mathematical model for
hysteresis,” Acta Acustica united with Acustica, vol.
24, no. 1, pp. 16–25.
[4] Chen M. Sh, Hwang Y. R and Tomizuka M (2002),
“A state-dependent boundary layer design for
sliding mode control”, IEEE transactions on
automatic, vol. 47, no. 10, pp. 1677-1681.
[5] Fatemi, L., Momeni, H., Alizadeh, G., and
Baradaran-nia, M., (2012). “Adaptive sliding mode
control of a single degree-of-freedom structure with
parameter uncertainty,” in Intelligent Systems,
Modelling and Simulation (ISMS), 2012 Third
International Conference on. IEEE, pp. 405– 410.
[6] Howson, W. P., Williams, F. W., et al., (2007).
“Robust H∞ control for aseismic structures with
uncertainties in model parameters,” Earthquake
Engineering and Engineering Vibration, vol. 6, no.
4, pp. 409–416.
[7] Ikhouane, F., and Rodellar, J., (2007). Systems with
hysteresis: analysis, identification and control using
the Bouc-Wen model. John Wiley & Sons.
[8] Ikhouane, F., MañOsa, V., and Rodellar, J., (2005).
“Adaptive control of a hysteretic structural system,”
Automatica, vol. 41, no. 2, pp. 225–231.
[9] Pozo, F., Ikhouane, F., Pujol, G., and Rodellar, J.,
(2006). “Adaptive backstepping control of
hysteretic base-isolated structures,” Journal of
Vibration and Control, vol. 12, no. 4, pp. 373–394.
[10] Soong, T., and Spencer, B., (2000). “Active, semiactive
and hybrid control of structures,” Bulletin of
the New Zealand National Society for
EarthquakeEngineering, vol. 33, no. 3, pp. 387–402.
[11] Wang, S.-G., Yeh, H., and Roschke, P., (2004).
“Robust active control for structural systems with
structured uncertainties,” Nonlinear Dynamics and
Systems Theory, vol. 4, no. 2, pp. 195–216.
[12] Wang, S.-G., Shieh, L. S., and Sunkel, J. W., (1995).
“Robust optimal pole-placement in a vertical strip
and disturbance rejection,” International journal of
Systems science, vol. 26, no. 10, pp. 1839–1853.
[13] Wang, S.-G., Yeh, H., and Roschke, P. N., (2001).
“Robust control for structural systems with
parametric and unstructured uncertainties,” Journal
of Vibration and Control, vol. 7, no. 5, pp. 753–772.
[14] Wen, Y.-K., (1976). “Method for random vibration
of hysteretic systems,” Journal of the Engineering
Mechanics Division, vol. 102, no. 2, pp. 249–263.
[15] Yao, J., (1972). “Concept of structural control,”
Journal of Structural Division, vol. 98, no. 7, pp.1567–1574.
[16] Zhang, W., Chen, Y., and Gao, H., (2011). “Energyto-
peak control for seismic-excited buildings with
actuator faults and parameter uncertainties,” Journal
of Sound and Vibration, vol. 330, no. 4, pp. 581–
602.