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Abstract 

Natural hazards such as earthquakes have threatened the life of human beings during the history. 
As a consequence, the vibration mitigation of structures has caught great importance. Active 
control of structures is one of the rapidly emerging areas in the concept of structural control. This 
paper presents a control method to deal with this subject when the dynamics of the structure is 
hysteretic and the parameters of the structure contain uncertainties. The hysteresis behavior of the 
structure is modeled using Bouc-Wen equation and the uncertainty is considered in its parameters. 
For control purpose, sliding mode method and its adaptive version are used. The salient point of 
adaptive sliding mode technique is that it does not use the uncertainty bounds in its controller; this 
is correspondent to the fact that the estimation of the structural parameters may not be exact. The 
efficiency of the proposed method is shown with a simulation.  

Keywords: Active control of nonlinear structures; structures with uncertain parameters; Bouc-
Wen model; vibration mitigation of structures. 

 

1- Introduction 

One of the perennial challenges in 
engineering is to find new and fruitful tools for 
protecting structures against the damaging 
effects of natural forces. Meanwhile, the 
earthquake is one of the events that are not 
possible to predict its exact time and place, 
though there has been much research about it. 
It seems that the way to deal with earthquakes 
is to immunize the structures against 
earthquakes. One of the methods that has been 
the subject of many studies in the field, is the 
idea of “structural control”, in recent decades, 

which is used to increase structures’ efficiency 
and safety against natural hazards. The 
concept of the structural control was first 
introduced by Yao [1]. Structural control 
methods can be classified as passive, semi-
active and active control systems. A passive 
control system consists of an appended or 
embedded device that modifies the stiffness or 
the damping of the structure in an appropriate 
manner without requiring an external power to 
operate and feed energy to the system [2]. 
Meanwhile, semi-active control systems are 
often viewed as controllable passive systems 
[3]. 

mailto:sahelkhodabakhshi@yahoo.com;
mailto:mbaradaran@tabrizu.ac.ir.
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In an active control system, an external 
source is applied to the structure in a 
prescribed manner. In such a system, control 
forces are developed based on feedbacks from 
sensors. These sensors measure the excitation 
and/or the response of the structure [2]. Active 
control systems are ready always to start 
activities and control vibrations. In 
comparison with passive control systems, a 
number of advantages associated with active 
control systems can be cited; among them are 
(a) enhanced effectiveness in response control; 
(b) relative insensitivity to site conditions and 
ground motion; (c) applicability to multi-
hazard mitigation situations (against wind as 
well as earthquake); and (d) selectivity of 
control objectives (human comfort or 
increased structural safety) [4]. 

 In this paper, the active control of structures 
is studied.  

A mathematical model of a structure is 
necessary for implementing an active control 
system in structure. The simplest and ideal 
model of single degree-of-freedom (SDOF) 
structural system is a linear dynamic equation 
composed of a mass connected to a spring and 
a damper which is subjected to seismic 
excitation. In practice, structures are placed 
under movement of went back, when 
stimulated by vibrations from earthquakes and 
their went-way is not identical with their back 
route in each went-back cycles.  

This phenomenon indicates that the 
equation of each class of structures also 
included “the phenomenon of hysteresis”. In 
other words, in the real case, the equations 
governing the motion of structures are not 
linear and should be considered along with 
equations including the hysteresis model of 

structures. So, there is a hysteresis term 
besides the mass-damper-spring term in the 
mathematical model of a structure [5]. 

There are several methods to model the 
hysteretic behavior, but this phenomenon in 
structural engineering is usually represented 
by using the so-called Bouc-Wen model 
proposed by Bouc and Wen [6], [7]. The model 
of Bouc-Wen, is the most famous 
mathematical model of hysteresis. This model 
has been used experimentally mainly in 
structural systems. The Bouc- Wen model is 
able to capture, in an analytical form, a rang of 
shapes of hysteretic cycles which matches the 
behavior of a wide class of hysteretic systems 
[8]. 

The exact extraction of the parameters of 
the dynamics model of a structure can not be 
carried out. After constructing a structure, its 
parameters are estimated by using special 
techniques for the purpose of analysis and/or 
increasing its resistance to natural 
disturbances such as wind or earthquake. So it 
is natural that the estimated parameters of a 
structure may not be exact. 

On the other hand, to analyze the nonlinear 
behavior of a specific structural system, in 
addition to the parameters of the structure, the 
parameters of the Bouc-Wen model should be 
estimated by using identification techniques 
that lead to the knowledge of an interval for 
each parameter; not the exact value of the 
parameters [9]. So the parameters of the whole 
system, involving the parameters of the 
structure and the Bouc-Wen model are not 
exact and contain uncertainty. Some 
researches have discussed the control of 
hysteretic structures under the uncertainty of 
its parameters.  
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Among the studied methods, we can refer to 
adaptive back stepping approach for single 
degree-of-freedom (DOF) and two DOF 
structures [9], [10], optimal sliding mode 
control (SMC) [5], Back stepping-based 
Lyapunov redesign control [2], H  
disturbance attenuation and   -degree 
stability [11]–[14], and energy to- peak 
method [15]. In these references, the 
uncertainty in the parameters of the Bouc-Wen 
model has not been discussed, while the 
existence of this uncertainty is unavoidable 
from practical point of view.  

This paper proposes a controller, based on 
the well-known SMC technique, which can 
stabilize the system in the presence of both 
structure and Bouc-Wen parameters’ 
uncertainties. Furthermore, since the 
estimation of a specific parameter may give us 
an interval for it, instead of its exact or 
estimated value, the adaptive SMC technique 
is studied to show its applicability in the area 
of civil structures.  

The organization of this paper is as follows. 
Section 2 presents the dynamics equation of a 
hysteretic structure. In section 3, a controller 
is developed which guarantees the stability of 
the closed loop system. Simulations’ results 
are given in section 4 to show the efficiency of 
the presented controllers, and finally section 5 
draws the conclusion of the paper. 

2- Problem Statement 

Consider now a Single degree of freedom 
(SDOF) structure with an active controller, as 
illustrated in Fig.1. The passive component of 
a base-isolated is Hysteretic.  

Fig.1. Base isolation system (left) and 
schematic model (right) 

The dynamic equation of a nonlinear SDOF 
structural system subjected to an earthquake 
excitation can be formulated as: 

( ) ( ) ( ( )) ( ) ( )mx t cx t x t ma t u t       (1) 

In (1), k  , c  and m  are stiffness, damping 
and mass coefficient of the structure, 
respectively. ( )a t  is the earthquake 
acceleration, and ( )u t  is an active control 
force. ( )x t , ( )x t  and ( )x t  are the 
displacement, velocity and acceleration, 
respectively. ( ( ))x t  is the nonlinear 
restoring force that shows nonlinear behavior 
of the structure, and it is described by Bouc-
Wen model as follows: 

( ( )) ( ) (1 ) ( ),x t kx t Dkz t      (2) 

11( ) ( ( ) ( ) ( )

( ) ( ) ( ) ).

n

n

z t D Ax t x t z t

z t x t z t





 



 

  

  (3) 

 

This model shows restoring force ( ( ))x t

with an elastic component kx  and a 
hysteretic component  (1 ) ( )kDz t  , in 
which 0D   refers to displacement efficiency 
constant and (0,1)   is pre-efficiency 
stiffness ratio. ( )z t   is a non-dimensional 
variable that is the solution of nonlinear first-
order differential equations(3). 
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In (3), A ,   and    are non-dimensional 
parameters and control of the size and shape 
of the hysteresis loop and 1n   handles the 
smoothness and governs the transition from 
elastic into plastic response. Note that an 
upper bound exists for earthquake 
perturbation. 

The dynamical modeling of (1)-(3) is valid 
when all parameters of the structure are 
exactly known. However, there is always a 
certain level of inaccuracy on parameter 
estimation and there may be found some 
deviations from their exact values in 
estimating these parameters. So (1)-(3) do not 
explain the exact behavior of the structure. If 
uncertainties in structural parameters are taken 
into account, (1)-(3) can be reformulated as 
follows:  

( ) ( ) ( ) ( )
( )( ) ( )
(1 ( ))( )( ) ( )

( ) ( ) ( )

m m x t c c x t
k k x t

D D k k z t
m m a t u t

 
 

    
    
       
    

 

 

(4) 

1

( ) 1

( )

( ) (( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ),

n n

n n

z D D A A x t

x t z t z t

x t z t

 

 



 



    

   

  







 (5) 

in which m ,  c , k  ,  , D  , A  ,  , n  and 
  are nominal values of the parameters and 
their deviation from exact values are estimated 
as m , c , k ,  , D , A ,   , n  and 

n . Control purpose here is to design the 
input force ( )u t  such a way that structural 
system in the presence of parameter 
uncertainties and earthquake perturbation has 
an acceptable response. 

Before proceeding to the controller design, 
the state-space representation of the system 
equations is given here. Taking 1( ) ( )x t x t , 

2 ( ) ( )x t x t   and ( )z t  as state variables, the 
state-space equations of the system dynamic 
(4)  and (5) are: 

  
1 2( ) ( ),x t x t  (6) 

2

1

1 ( )( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( )
( )

(1 ( ))( ) ( )
( )

c cx t a u t x t
m m m m

k k x t
m m
k k

D D z t
m m

 

 

 
   

   
 

  
 
 

     
 



 

 
 
(7) 

1

2
( ) 1

2

( )
2

( ) ( ) (( ) ( )

( ) ( ) ( )

( ) ( ) ( ) )

n n

n n

z t D D A A x t

x t z t

x t z t

 

 



 



    

  

  



 

 
(8) 

 

3- Control System Design 

Let us define a time-varying surface ( )s t  in 
the state-space nR  by the scalar equation 

0s   , where  

0 0
d

s x x x
dt

       


 
(9) 

With 0  as a strictly positive constant which 
identifies the slope of sliding surface. The 
dynamic motion on the sliding surface is 

0 0 1, 0 .s x x s x x         (10) 
While the motion is on the sliding surface, 

the system dynamics can be expressed as: 

2

1

0 2

1 ( )( )

( ) ( )
( )

( )(1 ( )) ( )

s x x
c ca u t x

m m m m
k k k k

x
m m m m
D D z t x



 

  

 
 

   
   

   
   

   
      

  

 

 
 

(11) 
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The term 1
m m 

 in (11) can be written as 

1 1
1

m
m m m m m


 

   
 
 
 

 (12) 

Replacing (13) in (11) yields 

0 2

2

1

1
1 ( )

1
1 ( )

1
1 ( )( )

1
1 ( )( )

(1 ( )) ( )

m
s x a u t

m m m
m

c c x
m m m

m
k k x

m m m
m

k k D D
m m m

z t



 

 


   

 


   

 


     

 


     

 

   

 
 
 

 
 
 
 
 
 
 
 
 



 

 
 
 

(13) 

By taking ( ) 0s t   and solving (13) for the 
control input when the uncertain terms are 
neglected, we obtain the equivalent control as 
(14). ( )equ t  can be interpreted as the 

continuous control law that would maintain if 
the dynamics were exactly known. 

0( ) ( ) (1 ) ( )equ x c m kx t Dkz t        (14) 

Attaining equivalent control, we seek for a 
term to be added to (14) for stabilizing the 
whole system. We take the control force ( )u t  
as: 

2 0 1( ) (1 )equ u mv x c m kx Dkz mv           (15) 

in which the signal ( )v t will be interpreted 
later. Substituting (15) into (13) with some 
mathematical manipulations result in 

0 2

1

1
[ ( . )

( . ) ]

1
[ . (1 ( )) .

(1 ( )) (1 ( ))

. ] .

s c m x
m m

k k k x

D k D k
m m

D k
mvD k z a v

m m



  

 

   



    
 

      

      
 

        


   




 

 
 

 
(16) 

Now, we are going to implement the SMC 
technique. By taking into consideration (16), 
we define   as 

 

1

0 2

1 [ ( . )

( . ) (( . .
) ( 1 ( ) ) . )

]

k k k x
m m

c m x D k D k
D k D k

z mv a

   



  

       
 

       

       

   

 

 
 
(17) 

Then, an upper bound for ( )t  as a function 
of 1( )x t , 2 ( )x t  and ( )v t  can be determined as: 



1

0 2

0

1 ( .

. ( . .

) 1 ( ) .

,

k k k x
m m

c m x D k D k

D k D k z

ma v
m m

   



  

      
 

       

       

 
 



 

 

(18) 

 
Where ( )a t a   and .   is a ∞-norm. By 

taking m m m     , it is obvious that

1  . In (18), 0z  is defined as 

0 ( )nz A     , It has been proved in [8] 
that when the parameters of the Bouc-Wen 
model belongs to the set { 0, }A    , the 
Bouc-Wen equation variable ( )z t  is bounded 
and by assumption (0) 0z  , the upper bound 
of ( )z t  is 0z . The aforementioned set can 
tackle a wide range of hysteretic behaviors of 
practical systems [8]. 

Taking the Lyapunov function candidate as 
21

2
V s  and calculating its time derivative, 

we have: 

1 2( ( , ) ).V ss sv s sv s x x v          (19) 
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We select ( )v t as sgn( )
1

s





 where 

1 1 2 2 3 0 4b x b x b z b      with some 0b   

and 1b , 2b  and 3b  satisfying the following 
inequalities: 

1

0
2

3

4

.
,

.
b ,

( . . . ) (1 ( )) .b ,

b .

k k k
b

m m

c m
m m

D k D k D k D k
m m

a

  



  

     


 

  


 

           


 

 

Then, we have b   , and thus V b s  . 
The obtained sliding mode controller needs 

the bounds of system uncertainties and uses 
these bounds in the controller. But, since the 
parameters of the structure as well as the 
parameters of the Bouc-Wen model are 
estimated, one may choose the boundary 
values of the uncertainties scrupulously which 
in turn would cause the sliding mode 
controller to be over-conservative. Hence, an 
adaptive sliding mode control (ASMC), is 
developed here. The proposed ASMC does not 
need the bounds of system uncertainties 
during the control process and instead, uses 
some auxiliary variables which adapt 
themselves during the control procedure. For 

this purpose, we define variables 1̂b ,  2̂b , 3̂b  

and 4̂b  by following differential equation                                                                

1 1

2 2

3

4

ˆ ,

b̂ ,

b̂ ,

b̂ .

b x s

x s

zs

s
















 

 
 

(20) 

Where ˆ 0ib   for 1,2,3, 4i  . Now consider 
the control law (14) with 

1 1 2 2 3 4
ˆ ˆ ˆ ˆ( 2 2 2 2 )sgn( )v b x b x b z b b s     

 along with Lyapunov function nominee 
2 2 2 2

1 1 2 2 3 3
1 ˆ ˆ ˆ( ) ( ) ( )
2

V s b b b b b b      
2

4 4̂( ) ]b b   Time derivative of V with some 
mathematical manipulations yields: 

1 1 1

0
2 2 2

3 4

1 1 2 2 3 4

. . .

.

( ).(1 ( )

2
1 1

ˆ ˆ ˆ ˆ( ).

k k kV x s b x s
m m

c m
x s b x s

m m
D k Dk D k

m m
Dk

zs b zs as b s
m m

m m
b s

m m m m

b x s b x s b zs b s

  



 



      
 

 
  

 
 

            
     

                

   





 

 
 
 
 
 

(21) 

1 1 1 1
. . .k k kR x s b x s

m m
        

 
 

0
2 2 2 2

.c m
R x s b x s

m m
  

  
 

3

3

( . . . )(1 ( ))D k D k D k kDR
m m

zs b zs

            


 
 

  

4 4R as b s    
Then, 1R , 2R , 3R  and  4R  are non-positive, 

because 

1 1 1 1

1 1 1

1 1

. . .

. . .

. . .

0,

k k kR x s b x s
m m

k k k x s b x s
m m

k k k b x s
m m

  

  

  

      
 

 
      

 
 

        
    



 

 
 

(22) 
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0
2 2 2 2

0
2 2 2

2 2

.

.

.
0

c m
R x s b x s

m m
c m

x s b x s
m m

c m
b x s

m m







  
  

 
  

 
 

  
  

 
 
 
 

 
(23) 

3

3

3

3
( . . . )(1 ( ))

. .

( . . )(1 ( ))

. .

( . . )(1 ( ))

. .
0,
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The terms 2
1

m
m m




 
 
 
 

 in equations are 

negative when m  satisfies the inequality 
m m  . As this condition is likely to be 
satisfied in practice, hence the stability of the 
controller is proved.  

4- Numerical Simulation and Results 

In order to show the efficiency of the 
proposed method, a numerical simulation is 
presented in this section. The acceleration of 
1940 El-Centro and 1994 Newhall 
earthquakes are applied to the structure as the 
ground vibration. The time history of 
acceleration of these earthquakes are 
illustrated in figure2. The parameters of the 
structure are selected as 3156 10m Kg  , 

4 1 6 12 10 , 6 10 , 0.6,c Nsm k Nm      

0.6 ,D m  1A  , 0.1   and 3n  . These 
parameters have been chosen from [9]. 
 We choose 0 0.5   for the sliding surface. 
The upper bound for system uncertainty are 
taken to be p p    where

{ , , , , , , , , }p m c k D n A   . The chattering 
phenomenon originating from the sgn( )s  
function of the controllers has been avoided 
by using it continuous estimation 

( )ts s e     with 0.1  . 
To evaluate the system performance, the 

simulation is carried out for a worst case 
where 0.2m m  , 0.2c c   , 0.2k k  , 

0.2   , 0.2D D  , 0.2n n   , 
0.2A A  , 0.2    , and 0.2   . It 

should be noted that these bounds of the 
parameter uncertainties do not need to be 
known for ASMC design. Figures 2-5 show 
the displacement and velocity of the 
uncontrolled structure, the structure controlled 
by SMC, and the structure controlled by 
ASMC.  

Figures 2 and 3 show the structure 
responses to the El-Centro earthquake and 
figures 3 and 4 show the structure responses to 
the Newhall earthquake. From these figures, it 
can be seen that the proposed SMC and ASMC 
provide improved results when they are 
compared with the uncontrolled structures. 
The comparison of the SMC with the ASMC 
indicates that both methods have acceptable 
results. It should be noted that when the 
response of the uncontrolled structure is 
compared with the controlled structure during 
the first seconds of starting the vibrations, the 
uncontrolled structure outperforms the 
controlled structure.  
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This is due to the fact that in the controlled 
structure, the adaptation of the variables and 
control law take some time and after a few 
seconds, the performance of the controlled 
structures show a very good reduction on both 
displacement and velocity responses. figures 6 
and 7 show the control force time histories of 
the SMC and ASMC methods when the 
structure is subjected to El-Centro and 
Newhall earthquakes, respectively. From 
these figures, the consumed control force in 
the ASMC method is less than the consumed 
control force in the SMC.  

 
Fig.2. Time history of external excitations; (a) 

El-Centro, (b) Newhall earthquakes 

 
Fig.3. Displacement of the structure subjected 

to El-Centro; (a) controlled with SMC, (b) 
controlled with ASMC, (c) uncontrolled. 

 
Fig.4. Velocity of the structure subjected to El-
Centro; (a) controlled with SMC, (b) controlled 

with ASMC, (c) uncontrolled. 

Fig.5. Displacement of the structure subjected to 
Newhall; (a) controlled with SMC, (b) controlled 

with ASMC, (c) uncontrolled. 

 

Fig.6. Velocity of the structure subjected to 
Newhall; (a) controlled with SMC, (b) 

controlled with ASMC, (c) uncontrolled. 
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Fig.7. Control Force (KN), when the structure 
is subjected to El-Centro earthquake. 

 

Fig.8. Control Force (KN), when the structure is 
subjected to Newhall earthquake. 

5- Conclusion 

  An active controller was presented in this 
paper to mitigate the effects of earthquake on 
structures. The nonlinear dynamics of a SDOF 
structure were studied and its nonlinearity was 
modeled using Bouc-Wen equation. In 
practice, the parameters of the structure and 
Bouc-Wen model are estimated by 
identification methods and as a result, some 
uncertainties got involved into the parameters. 
The structure studied here was the one which 

its parameters as well as the coefficients of 
Bouc-Wen equation contain uncertainty. The 
proposed sliding mode controller proved the 
stability of the closed loop system. Also an 
adaptive sliding mode controller was proposed 
to cope with the structural control when the 
upper bounds of the parameter uncertainties 
are not identified. A simulation is carried out 
using records of well-known El-Centro and 
Newhall earthquakes. The results showed that 
both presented methods can efficiently reduce 
the displacement and velocity of the nonlinear 
structure.  

 

Appendix A 

The author(s) can insert an appendix with a 
meaningful title here. In equation 

sgn(s)
1

v 






, the sign function in the 

sliding mode method causes to chattering in 
the control diagram. For solving this problem 
in simulation, we use the following procedure 
to eliminate this defect: 

Sliding mode control of uncertain 
parameters and external disturbances is known 
to be resistant. A switching function is used in 
the control law which causes to control signals 
chattering. To reduce chattering it can be 
presented a boundary layer around the sliding 
surface. Inside boundary layer, there is a 
discontinuous switching function with a 
continuous function to avoid discontinuity of 
control signals. However, different choices of 
the boundary layer width lead to contradictory 
effects including small / large boundary layer 
that causes to more or less effectively 
reduction of chattering phenomenon, but the 
results are more or less precise controlled. 
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Proposing mode dependent boundary layer 
can effectively reduce chattering while 
ensuring the control precision simultaneously 
[16]. We use the following relationships for 
designing sliding variable: 

1 1
0

t

x or x d    
 

  
)26(  

 
 0 1 2

1 1 1 1 0 1
0

, , ,...,1

...
t

n n n

s Cx c C c c

x c x c x c x d



 

  

     
 

  
)27(  

( 1) ( 2)
1 1 1 1 1

0 10

.....n n
n

t

x c x c x

c x d

 
   

 
  

(28) 

Where the coefficients ic s  are chosen so 
that the differential equation (28) is stable. The 
purpose of adding the integral in (28) is for the 
particular case when the system is 1n  . 
Differential equations (27) and (28) can be 
rewritten in state space as follows: 

1
0

1

1

,
.
.

t

n

n

x d

x
z Fz Gs where z R

x





 
 
 
 

    
 
 
 
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

  (29) 

Matrix F and G in the canonical controller 
form are: 

0 1

0 1 . .
. 0 1 .

,. . . .
. .

0
.
0
1

n n

n

n
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c c
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 
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(30) 

Where the differential equation (28) is table 
choosing of constant coefficients ,

ic s , the 
matrix F in (29) is stable. 

 There are several results about (29) that 
will be used repeatedly in later sections. 

Firstly, due to the stable matrix F in (30), 
there are a positive constant m   and    such 
that there 

( ) ( )F t te me t         (31) 

  is determined as a control parameter with 
value by selection of ,

ic s  in (28). 
Secondly, with respect to any positive 

constant Re[ (F)] 0i     for all i that 

Re[ (F)]i  represents the real part of the eigen 
values F, there are positive definite matrix

n nP R   that implies the Liapanove 
inequality: 

( ) ( ) 0,
Re[ ( )] 0

T

i

F I P P F I
F i

 
 
     
   

 

 
(32)  

Finally, this case is applied in (29) 

( )

0

( ) (0) ( )
t

Ft F tz t e z e Gs d    
 

          
(33)  

In the design of the control input, the 
steady-state equation (29) shows that if the 
sliding variable s  can be led to zero by some 
control designs the state is reduced to zero; 
therefore, the choice of control law in sliding 
mode is with “switching / sign” function for 
reaching to zero that switching function equals 
to: 

0

1, s 0
( ) sgn(s)

1, 0.
f s

s


     

  
(34) 
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In the practical implementation of control 
and switching, incomplete switching of 
discontinuous function 0 sgn( )f s  is the 
cause of chattering in the control signals. This 
chattering may cause damage to the actuator 
or high-frequency non-modeled dynamic 
stimulation. To reduce this problem, a 
boundary layer is proposed around the sliding 
surface 0s   for smoothing (large boundary 
layer width) of control signal. 

Instead of using a discontinuous function 

0 sgn( )f s  is replaced by u  in a continuous 
function: 

1 0
0

( ) , 0, 0t

sf s
s e    

    


 (35)  

Where 0
te     is large boundary layer width 

that is exponential drop to zero when 0   
and 0    is held constant. The significant 
point is that the use of larger boundary width 
can be effective in reduction of chattering 
phenomenon in the control force, in sliding 
mode method. By applying a continuous 
function (35) in the control law, chattering is 
removed in sliding mode control design in 
control diagram. 
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