Simulation of solar system performance using software (GRASSHOPPER) for energy consumption policy in housing by comparing traditional and contemporary houses in Shiraz city.
Subject Areas : Urbanismtara heidari.orojloo 1 , AFSHIN GHORBANI PARAM 2 , faramarz hassan pour 3
1 - 1. Ph.D. Student, Department of Architecture, Faculty of Engineering, Zahedan Branch, Islamic Azad University, Zahedan, Iran
2 - Assistant Professor, Department of Architecture, Faculty of Art and Architecture, Damavand Branch, Islamic Azad University, Damavand, Iran
3 - 3. Assistant Professor, Department of Architecture, Faculty of Art and Architecture, Zabol University, Zabol, Iran
Keywords: Solar energy, policy, optimization, housing,
Abstract :
Today, the limitation of fossil energy and the degeneration of the environment affected by the increase in the concentration of carbon dioxide resulting from its use and other difficulties and shortages of electricity, along with increasing energy demand, especially in developing countries, are valid and necessary evidence that makes use of clean and accessible resources, such as solar energy, in abundance. Due to its location on the Earth's solar belt, Iran has a wide potential for the use of solar energy. There are ways to use solar energy and generate electricity, including CSP technology for solar thermal power plants or photovoltaic systems. In this research, using GRASSHOPPER software, we have investigated the effect of shade and other effective indicators in optimizing energy consumption by examining the condition of traditional and contemporary houses, considering the materials used in these houses in Shiraz, and the energy results for them have been evaluated and compared in different months.
Abbasi Godarzi, A., & Maleki, A. (2017). Renewable Energy policy in I.R.Iran. Strategic Studies of public policy, 7(23), 159-174.
Behzadianmehr, A., Alijani, B., & Rahnama, M. R. (2018). Climate Design and Determination of the Optimal Orientation of Buildings and Streets with Respect to Radiation in Mashhad. Journal of Geography and Regional Development, 15(2), 197-216.
Bolouhari, S. Barbera, L. V، Etessam I. (2020). Learning Traditional Architecture for Future Energy-Efficient Architecture in the Country; Case Study: Yazd City. Naqshejahan- Basic studies and New Technologies of Architecture and Planning. 10(2): 85-93.
Borgstein, E. R. Lamberts، and Hensen, J. (2016). Evaluating energy performance in non-domestic buildings: A review. Energy and Buildings. 128: 734-755.
Emrani-Rahaghi P, Hashemi-Dezaki H. Optimal Operation of Residential Energy Hubs Considering Optimized Capacity of Photovoltaic-based Renewable Energy Systems. ieijqp 2021; 10 (2) :40-56
Ghorbani, A., Fartash, K., & Khayatian, M. (2020). Interpretive-structural modeling of challenges affecting the policy-making process of renewable energy technologies development in Iran. Quarterly journal of Industrial Technology Development, 18(41), 13-26.
Hajali Zadeh, G. (2023). Investigation of energy consumption of traditional houses in approach to sustainable architecture (Case Study: Ardebil, Sanandaj, Hamedan and Tabriz cities of Iran). Journal of Urban Management and Energy Sustainability, 5(1), 130-146.
He, X. (2018). Study of Interior Public Spaces for the Promotion of Social Interaction in High-rise Residential Buildings، Thesis. Rochester Institute of Technology. Accessed from https://scholarworks. rit. edu/theses/9974
Honarvar, S. M. H., Golabchi, M., & Ledari, M. B. (2022). Building circularity as a measure of sustainability in the old and modern architecture: A case study of architecture development in the hot and dry climate. Energy and Buildings, 275, 112469.
Kuşkaya, S., Bilgili, F., Muğaloğlu, E., Khan, K., Hoque, M. E., & Toguç, N. (2023). The role of solar energy usage in environmental sustainability: Fresh evidence through time-frequency analyses. Renewable Energy, 206, 858-871.
Lehmann, S. (2016). An environmental and social approach in the modern architecture of Brazil: The work of Lina Bo Bardi، Journal of City، Culture and Society، 7(3): 169-18.
Li Weihong. (2011). Sustainable design for low carbon architecture. Procedia Environmental Sciences; 177(5): 173.
Monavariyan, A., Vatankhah Moghaddam, S., Shah Hoseini,, M. A., Vaezi, S. K., & Noorollahi, Y. (2020). Designing of Policy Making Model of Renewable Energy Development in Iran. Iranian Journal of Public Policy, 6(2), 115-134.
Nakhaee Sharif, A., Keshavarz Saleh, S., Afzal, S., Shoja Razavi, N., Fadaei Nasab, M., & Kadaei, S. (2022). Evaluating and identifying climatic design features in traditional Iranian architecture for energy saving (case study of residential architecture in northwest of Iran). Complexity, 2022.
Nouhi, Hamid, (2005). Reflections on Art and Architecture, Tehran: Gam Noo Publication.
Ordouei, M., Broumandnia, A., Banirostam, T., & Gilani, A. (2023). Optimization of energy consumption in smart city using reinforcement learning algorithm. International Journal of Nonlinear Analysis and Applications, (Articles in Press), -. doi: 10.22075/ijnaa.2022.29258.4102
Roth، M.، (2017). Updating the ASHRAE Climate Design Data for 2017. ASHRAE Transactions، 123.
Roudsari، M. S.، M. Pak, Ye، Y.، Ding،Y. (2019). Measuring Social impacts of tall buildings lower public space، international journal of high-buildings، 8(1): 173-180.
Zhou. X.، Ye،Y.، Wang،Z. (2019). Tall Buildings as Urban Habitats: A Quantitative Approach for Measuring Positive Social Impacts of Tall Buildings' Lower Public Space، International Journal of High-Rise Buildings، 80(1): 57-69.
http://www. hamshahrionline. ir
http://www. saba. org. ir/saba_content/media/image/2012/03/3512_orig. pdf
https://www. sid. ir/fa/journal/ViewPaper. aspx?id=568531
http://www. saba. org. ir/saba_content/media/image/2012/03/3512_orig. pdf