Effects of Metam-Sodium on Weeds, Broomrape (Phelipanche aegyptiaca Pers.) and Soil Microbial Respiration in Tomato (Lycopersicon esculentum Mill.) Field
Subject Areas : Semi Annual Journal of Weed EcologyAdeleh Assaran 1 , Mohammad Hasan Hadizadeh 2 , Kiyoomars Bakhsh Kelarestaghi 3 , Seyed Hossein Torabi 4
1 - دانشآموخته کارشناسی ارشد شناسایی و مبارزه با علفهای هرز دانشگاه آزاد اسلامی، واحد مشهد
2 - استادیار بخش تحقیقات گیاه پزشکی مرکز تحقیقات کشاورزی و منابع طبیعی خراسان رضوی
3 - استادیار گروه زراعت، دانشگاه آزاد اسلامی مشهد
4 - محقق بخش تحقیقات گیاه پزشکی مرکز تحقیقات کشاورزی و منابع طبیعی خراسان رضوی
Keywords:
Abstract :
Broomrape is one of the most troublesome parasite weeds in the tomato fields of Iran that use of fumigant material is one of the way for its control. Five application doses 0, 500, 750, 1000, 1250, 1500 l ha-1 of Metam-Sodium were applied by shank injection in a tomato filed of Astan Qods in Mashhad during 2011. The experiment was arranged in a completely randomized block design with four replications. Plots were divided in two parts so that in one half only weeds were removed and in the other one both weeds and broomrapes were maintained throughout the growing season. Densities and dry weights of broomrape as well as weed size were measured in each half part separately. The results showed that Metam-Sodium was able to reduce weed density as three-parameter logistic dose response curve. The most tolerant weeds were pigweed and common lambs-quarters with ED50 of 474 and 775 l ha-1 respectively while common purslane, black night-shade and barnyardgrass were more sensitive. Despite weed reduction, there was no harvest for tomato because of high remained weed density that is probably more than weed threshold. Broomrape was not affected by metam-sodium but corresponding tomato yield increased in linear form. A decrease of soil respiration by Metam–sodium was expressed by the four-parameter Gompertze equation.
- بحرینی، ح. و م. گیتی. 1387. اثرات استفاده از سم واپام برای کنترل نماتد سیستی سیب زمینی در همدان. سومین همایش یافتههای پژوهشی کشاورزی و منابع طبیعی (غرب کشور).
2- دفتر آمار و فناوری اطلاعات وزارت جهاد کشاورزی. 1389. آمارنامه کشاورزی، جلد اول محصولات زراعی سال زراعی 1388-1387. وزارت جهادکشاورزی، معاونت برنامه ریزی و اقتصادی.
3- شیخی. 1388. راهنمای آفت کشهای ایران. انتشارات کتاب پایتخت تهران.
4- مین باشی معینی. 1383. گل جالیز. انتشارات موسسه تحقیقات آفات و بیماریهای گیاهی.
5- هادیزاده. 1387. بررسی اثر افزایش مواد آلی خاک و میزان مصرف علفکش سولفوسولفورون بر درجه پایداری آن و ویژگیهای زیستی خاک در گندم. پایان نامه دکتری علفهای هرز. دانشکده کشاورزی، دانشگاه فردوسی مشهد.
6- هادیزاده. 1390. بررسی راهکارهای مدیریت گل جالیز در گوجه فرنگی بر مبنای کاربرد علفکش گلایفوسیت، سولفوسولفورون در تلفیق با سولفات آمونیوم یا استفاده از کلش. گزارش نهایی پروژه تحقیقاتی به شماره 89137-16-43-4: در دست انتشار.
7- Abu-Irmaileh, B.E. and R. Labrada. 2005. The problem of Orobanche spp. In africa and near east. Plant Protection and Production Division-Pest Management Weed Management, FAO-Rome, available at: http://www.fao.org/AG/AGP/AGPP/IPM/Weeds/weedpublic.htmchallenging
8- Ajwa, H., W.J. Ntow, R. Qin and S. Gao. 2010. Properties of soil fumigants and their fate in the environment. In: Krieger, R. (Ed.), Hayes’ handbook of pesticide toxicology. Academic Press, 315-330.
9- Ajwa, H., T. Trout, J. Mueller, S. Wilhelm, S. Nelson, R. Soppe and D. Shatley. 2002. Application of alternative fumigants through drip irrigation systems. Phytopathology, 92: 1349-1355.
10- Aly, R. 2007. Conventional and biotechnological approaches for control of parasitic weeds. In Vitro Cell. Dev. Biol—Plant. 43: 304-317.
11- Bülbül, F., E. Aksoy, S. Uygur and N. Uygur. 2009. Broomrape (Orobanche spp.) problem in the eastern mediterranean region of Turkey. Helia. 32: 141-152.
12- Desaeger, J., A. Csinos, P. Timper, G. Hammes and K. Seebold. 2004. Soil fumigation and oxamyl drip applications for nematode and insect control in vegetable plasticulture. Ann. App. Bio. 145: 59-70.
13- Desaeger, J.A., K.W. Seebold and A.S. Csinos. 2008. Effect of application timing and method on efficacy and phytotoxicity of 1,3-d, chloropicrin and metam-sodium combinations in squash plasticulture. Pest Manag. Sci. 64: 230-238.
14- Dungan, R.S. and S.R. Yates. 2003. Degradation of fumigant pesticides: 1,3-dichloropropene, methyl isothiocyanate, chloropicrin, and methyl bromide. Vadose Zone Jo. 2: 279-286.
15- El-Halmouch, Y., H. Benharrat and P. Thalouarn. 2006. Effect of root exudates from different tomato genotypes on broomrape (O. aegyptiaca) seed germination and tubercle development. Crop Prot. 25: 501-507.
16- Elzein, A. and J. Kroschel. 2003. Progress on management of parasitic weeds. FAO Plant Production and Protection Paper (FAO).
17- Fenández-Aparicio, M., J.C. Sillero and D. Rubiales. 2007. Intercropping with cereals reduces infection by Orobanche crenata in legumes. Crop Prot. 26: 1166-1172.
18- Fernández-Aparicio, M., A.A. Emeran and D. Rubiales. 2008. Control of Orobanche crenata in legumes intercropped with fenugreek (Trigonella foenum-graecum). Crop Prot. 27: 653-659.
19- Fernández-Aparicio, M., A.A. Emeran and D. Rubiales. 2010. Inter-cropping with berseem clover (Trifolium alexandrinum) reduces infection by Orobanche crenata in legumes. Crop Prot. 29: 867-871.
20- Gerik, J.S. and B.D. Hanson. 2011. Drip application of methyl bromide alternative chemicals for control of soilborne pathogens and weeds. Pest Manag. Sci. 67: 1129-1133.
21- Gilreath, J.P., J.P. Jones, B.M. Santos and A.J. Overman. 2004. Soil fumigant evaluations for soilborne pest and Cyperus rotundus control in fresh market tomato. Crop Prot. 23: 889-893.
22- Gilreath, J.P. and B.M. Santos. 2004. Methyl bromide alternatives for weed and soilborne disease management in tomato (Lycopersicon esculentum). Crop Prot. 23: 1193-1198.
23- Goldwasser, Y., H. Eizenberg, J. Hershenhorn, D. Plakhine, T. Blumenfeld, H. Buxbaum, S. Golan and Y. Kleifeld. 2001. Control of Orobanche aegyptiaca and O. ramosa in potato. Crop Prot., 20: 403-410.
24- Ibekwe, A.M., S.K. Papiernik, J. Gan, S.R. Yates, C.H. Yang and D.E. Crowley. 2001. Impact of fumigants on soil microbial communities. App Environ Mic. 67: 3245-3257.
25- Joel, D.M. 2000. The long-term approach to parasitic weeds control: Manipulation of specific developmental mechanisms of the parasite. Crop Prot. 19: 753-758.
26- Klose, S., V. Acosta-Martínez and H.A. Ajwa. 2006. Microbial community composition and enzyme activities in a sandy loam soil after fumigation with methyl bromide or alternative biocides. Soil Biol. Biochem. 38: 1243-1254.
27- Klose, S., H.A. Ajwa, G.T. Browne, K.V. Subbarao, F.N. Martin, S.A. Fennimore and B.B. Westerdahl. 2008. Dose response of weed seeds, plant-parasitic nematodes, and pathogens to twelve rates of metam sodium in a california soil. Plant Dis. 92: 1537-1546.
28- Klose, S., H.A. Ajwa, S.A. Fennimore, F.N. Martin, G.T. Browne and K.V. Subbarao. 2007. Dose response of weed seeds and soilborne pathogens to 1,3-d and chloropicrin. Crop Prot. 26: 535-542.
29- Kroschel, J. 2002. A technical manual for parasitic weed research and extension. Kluwer Academic Pub.
30- Macalady, J.L., M.E. Fuller and K.M. Scow. 1998. Effects of metam sodium fumigation on soil microbial activity and community structure. J. Environ. Qual. 27: 54-63.
31- Matusova, R., K. Rani, F.W.A. Verstappen, M.C.R. Franssen, M.H. Beale and H.J. Bouwmeester. 2005. The strigolactone germination stimulants of the plant-parasitic striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol., 139: 920-934.
32- Ritz, C. and J.C. Streibig. 2005. Bioassay analysis using R. J. Statistic. Soft 12: 1–22.
33- Rubiales, D., M. Fernández-Aparicio, K. Wegmann and D.M. Joel. 2009. Revisiting strategies for reducing the seedbank of Orobanche and Phelipanche spp. Weed Res. 49: 23-33.
34- Santos, B.M., J.P. Gilreath, T.N. Motis, J.W. Noling, J.P. Jones and J.A. Norton. 2006. Comparing methyl bromide alternatives for soilborne disease, nematode and weed management in fresh market tomato. Crop Prot. 25: 690-695.
35- Smelt, J., S. Crum and W. Teunissen. 1989. Accelerated transformation of the fumigant methyl isothiocyanate in soil after repeated application of metham-sodium. J. Environ. Sci. Health. Part B. Pestic., Food contam. Agric. Wastes 24: 437-455.
36- Stromberger, M.E., S. Klose, H. Ajwa, T. Trout and S. Fennimore. 2005. Microbial populations and enzyme activities in soils fumigated with methyl bromide alternatives. Soil Sci. Soc. Am. J. 69: 1987-1990.
37- Triky-Dotan, S., M. Austerweil, B. Steiner, Y. Peretz-Alon, J. Katan and A. Gamliel. 2009. Accelerated degradation of metam-sodium in soil and consequences for root-disease management. Phytopathology. 99: 362-368.
38- Virtue, J.G., C. Dedear, M.J. Potter and M. Rieger. 2006. Potential use of isothiocyanates in branched broomrape eradication. Weed Management Society of South Australia, Victoria. 629-632.
39- Weaver, S. and C. Tan. 1987. Critical period of weed interference in field-seeded tomatoes and its relation to water stress and shading. Can. J. Plant Sci. 67: 575-583.
40- Weaver, S.E. 1984. Critical period of weed competition in three vegetable crops in relation to management practices. Weed Res. 24: 317-325.
41- Zhang, Y., K. Spokas and D. Wang. 2005. Degradation of methyl isothiocyanate and chloropicrin in forest nursery soils. J. Environ. Qual. 34: 1566.
42- Zheng, W., S.R. Yates, S.K. Papiernik and J. Nunez. 2006. Conversion of metam sodium and emission of fumigant from soil columns. Atmos Environ. 40: 7046-7056.
_||_