Non-Axisymmetric Time-Dependent Creep Analysis in a Thick-Walled Cylinder Due to the Thermo-mechanical loading
Subject Areas : Engineering
1 - Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
2 - Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
Keywords:
Abstract :
Loghman A., Shokouhi N., 2009, Creep damage evaluation of thick-walled spheres using a long-term creep constitutive model, Journal of Mechanical Science and Technology 23(10): 2577-2582.
[2] Moon H., Kim K.M., Jeon Y.H., Shin S., Park J.S., Cho H.H., 2014, Effect of thermal stress on creep lifetime for a gas turbine combustion liner, Engineering Failure Analysis 47(1): 34-40.
[3] Zhu S.P., Huang H.Z., He L.P., Liu Y., Wang Z., 2012, A generalized energy-based fatigue–creep damage parameter for life prediction of turbine disk alloys, Engineering Fracture Mechanics 90(1): 89-100.
[4] Wang W., Buhl P., Klenk A., 2015, A unified viscoplastic constitutive model with damage for multi-axial creep–fatigue loading, International Journal of Damage Mechanics 24(3): 363-382.
[5] Roy N., Das A., Ray A., 2015, Simulation and quantification of creep damage, International Journal of Damage Mechanics 24(7): 1086-1106.
[6] Kobelev V., 2014, Some basic solutions for nonlinear creep, International Journal of Solids and Structures 51(19): 3372-3381.
[7] Nejad M.Z., Kashkoli M.D., 2014, Time-dependent thermo-creep analysis of rotating FGM thick-walled cylindrical pressure vessels under heat flux, International Journal of Engineering Science 82(1): 222-237.
[8] Kashkoli M.D., Nejad M.Z., 2015, Time-dependent thermo-elastic creep analysis of thick-walled spherical pressure vessels made of functionally graded materials, Journal of Theoretical and Applied Mechanics 53(4): 1053-1065.
[9] Loghman A., Azami M., 2016, A novel analytical-numerical solution for nonlinear time-dependent electro-thermo-mechanical creep behavior of rotating disk made of piezoelectric polymer, Applied Mathematical Modelling 40(7): 4795-4811.
[10] Chen Y., Lin X., 2008, Elastic analysis for thick cylinders and spherical pressure vessels made of functionally graded materials, Computational Materials Science 44(2): 581-587.
[11] Dai H., Fu Y., 2007, Magnetothermoelastic interactions in hollow structures of functionally graded material subjected to mechanical loads, International Journal of Pressure Vessels and Piping 84(3): 132-138.
[12] Tarn J.Q., 2001, Exact solutions for functionally graded anisotropic cylinders subjected to thermal and mechanical loads, International Journal of Solids and Structures 38(46): 8189-8206.
[13] Jabbari M., Sohrabpour S., Eslami M., 2003, General solution for mechanical and thermal stresses in a functionally graded hollow cylinder due to non-axisymmetric steady-state loads, Journal of Applied Mechanics 70(1): 111-118.
[14] Shao Z., Ang K., Reddy J., Wang T., 2008, Nonaxisymmetric thermomechanical analysis of functionally graded hollow cylinders, Journal of Thermal Stresses 31(6): 515-536.
[15] Ootao Y., Ishihara M., 2013, Asymmetric transient thermal stress of a functionally graded hollow cylinder with piecewise power law, Structural Engineering & Mechanics 47(3): 421-442.
[16] Loghman A., Nasr M., Arefi M., 2017, Non-symmetric thermomechanical analysis of a functionally graded cylinder subjected to mechanical, thermal, and magnetic loads, Journal of Thermal Stresses 40(6): 765-782.
[17] Meshkini M., Firoozbakhsh K., Jabbari M., SelkGhafari A., 2017, Asymmetric mechanical and thermal stresses in 2D-FGPPMs hollow cylinder, Journal of Thermal Stresses 40(4): 448-469.
[18] Kashkoli M.D., Tahan K.N., Nejad M.Z., 2017, Time-dependent thermomechanical creep behavior of FGM thick hollow cylindrical shells under non-uniform internal pressure, Journal of Applied Mechanics 9(6): 1750086.
[19] Sreenivasan P.R., 2013, Hot tensile data and creep properties derived there-from for 316L(N) stainless steel with various nitrogen contents, Procedia Engineering 55(1): 82-87.
[20] Kim B.J., 2013, Small punch creep behavior and nondestructive evaluation of long term aged AISI 316L stainless steel, International Journal of Precision Engineering and Manufacturing 14(7): 1267-1270.
[21] Guo J., Shi H., Meng W., 2013, Prediction methodology of creep performance from stress relaxation measurements, Applied Mechanics and Materials 401(1): 920-923.
[22] Loghman A., Moradi M., 2013, The analysis of time-dependent creep in FGPM thick walled sphere under electro-magneto-thermo-mechanical loadings, Mechanics of Time-Dependent Materials 17(3): 315-329.
[23] Loghman A., Aleayoub S.M.A., Sadi M.H., 2011, Time-dependent magnetothermoelastic creep modeling of FGM spheres using method of successive elastic solution, Applied Mathematical Modelling 36(2): 836-845.
[24] Loghman A., Ghorbanpour Arani A., Amir S., Vajedi A., 2010, Magnetothermoelastic creep analysis of functionally graded cylinders, International Journal of Pressure Vessels and Piping 87(7): 389-395.
[25] Ganesan V., Mathew M.D., Rao K.B.S., 2009, Influence of nitrogen on tensile properties of 316LN SS, Journal of Materials Science and Technology 25(5): 614-618.
[26] Jiang W., Zhang Y., Woo W., 2012, Using heat sink technology to decrease residual stress in 316L stainless steel welding joint: Finite element simulation, International Journal of Pressure Vessels and Piping 92(1): 56-62.
[27] Penny R.K., Marriott D.L., 2012, Design for Creep, Springer Science & Business Media, New York.
[28] Incropera F.P., De Witt D.P., 1985, Fundamentals of Heat and Mass Transfer, John Wiley and Sons Inc, New York.
[29] Kumar J.G., Ganesan V., Laha K., Mathew M.D., 2013, Time dependent design curves for a high nitrogen grade of 316LN stainless steel for fast reactor applications, Nuclear Engineering and Design 265(1): 949-956.