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 ABSTRACT 

 In this study, the non-linear creep behaviour of a thick-walled cylinder 

made of stainless steel 316 is investigated using a semi-analytical method. 

The thick-walled cylinder is under a uniform internal pressure and a non-

axisymmetric thermal field as a function of the radial and circumferential 

coordinates. For the high temperature and stress levels, creep phenomena 

play a major role in stress redistributions across the cylinder thickness. The 

Bailey-Norton creep constitutive equation is used to model the uniaxial 

creep behaviour of the material. Creep strain increments are accumulated 

incrementally during the life of the vessel. Creep strain increments are 

related to the current stresses and the material uniaxial creep model by the 

well-known Prandtl-Reuss relations. Considering the mentioned non-

axisymmetric boundary conditions, the heat conduction equation and the 

Navier partial differential equations has been solved using the separation of 

variables and the complex Fourier series methods. The corresponding 

displacement, strain and stress functions are obtained. Considering the non-

axisymmetric loadings, the distribution of the radial, circumferential and 

shear stresses are studied. Furthermore, the effects of internal pressure and 

external temperature distribution on the effective stress history are 

investigated. It has been found that the non-axisymmetric thermal loading 

has a significant effect on stress redistributions. 

                                     © 2018 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 REEP analysis is always a major concern in aerospace, petrochemical, nuclear and power plant industries to 

predict the useful life of structures under thermal and mechanical loadings [1-4]. Creep deformations in various 

components of the structure are caused by loading conditions that involve long-term high temperature and stresses. 

Nonlinear analysis of creep plays a significant role in estimating the longevity and damage in components which are 

exposed to high-temperature and high-stress levels [5,6]. Thick-walled cylindrical or spherical components are 

extensively used as pressure vessels. Many researchers have investigated the creep response of thick-walled 

components under thermo-elastic loading [7-9]. Most of the creep analyses are devoted to one-dimensional 
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axisymmetric problems [10-12]. Considering the non-axisymmetric loading conditions lead to mathematical 

complexity of the differential equations which cannot be solved by simple conventional methods. The non-

axisymmetric analysis of a Functionally Graded Material (FGM) cylinder under non-axisymmetric mechanical and 

thermal loadings was carried out by Jabari et al. [13]. They have solved the non-axisymmetric heat transfer and 

Navier equations in cylindrical coordinates using complex Fourier series. Shao et al. [14] studied thermoelastic 

analysis of a FGM cylinder under a non-axisymmetric transient thermal loading. They also provided a steady state 

solution by considering the time parameter as infinite in equations. Also, Otwo and Oishahra [15] studied the 

transient thermal stresses for non-axisymmetric loading in thick-walled cylindrical structures. They have 

investigated the effects of various material distributions in a FGM cylinder on the behaviour of thermal stresses. 

Loghman et al. [16] examined the effect of non-axisymmetric mechanical, thermal and uniform magnetic loads on 

FGM cylindrical structures. In this study, it was found that the distribution of material in a FGM cylinder and 

loadings have a significant effect on the history of stresses in the cylindrical vessel. Meshkini et al. [17] investigated 

the stress distribution in a thick-walled cylinder made of porous Functionally Graded Piezoelectric Material (FGPM) 

under non-axisymmetric thermal, mechanical, and electrical loadings based on two-dimensional thermoelastic 

equations. They have investigated the effects of the material distribution of FGM, electric potential coefficients and 

porosity coefficient on thermal and mechanical stresses in a cylindrical vessel. Kashkoli et al. [18] presented a 

theoretical solution for thermoelastic and time-dependent creep analysis of a FGM thick-walled cylinder based on 

the first-order shear deformation theory (FSDT). The cylinder was subjected to the non-uniform internal pressure 

and distributed temperature field due to steady-state heat conduction from inner to outer surface of the cylinder. 
The creep behaviour of the engineering materials which are working under high-temperature and high-stress 

levels should be investigated to predict remnant life of the components in order to prevent catastrophic events. One 

of the most widely used engineering materials which has the ability to withstand high temperatures and stresses for a 

long time is stainless steel 316 [19,20]. This material is used in fabricating pressure vessels, which are usually used 

for long periods of time under high-pressure and high-temperature. Lifetime prediction of these structures is very 

important. Time dependent creep analyses are essential for estimating the useful life and damage in the thickness of 

these structures. Also, the constitutive equation of creep is very important in these analyses. So far, several models 

have been proposed to describe the triple creep stages [6,21]. One of the most frequently used constitutive equation 

in the literature is the Bailey-Norton relationship which is usually used to model the primary and secondary creep. 

Loghman et al. [22-24] have used this relation in several works to obtain the history of stresses and strains in 

pressure vessels. According to the reviewed works, a few studies have been conducted on creep analysis under non-

axisymmetric loading conditions.  

In this research, we have tried to predict the history of creep stresses due to the non-axisymmetric loading in a 

thick-walled cylinder made of stainless steel 316. For this purpose, the Bailey-Norton’ law has been used as the 

constitutive equation of creep. The effect of time, temperature and pressure on the history of stresses have been 

investigated.   

2    GEOMETRY, MATERIAL SPECIFICATIONS AND LOADING CONDITIONS  

A long thick-walled cylinder is considered to have the inner and outer radius as “a” and “b”, respectively. With 

these conditions, the strain in the longitudinal direction (z-direction) of the cylinder could be ignored (the plane 

strain condition), so we have: 

 

0;  0;   0;
zz rz z
      (1)  

 

This cylinder is located in an environment with non-axisymmetric thermal field ( , )T r   and internal pressure Pa. 

The non-axisymmetric thermal load on the outer surface of the cylinder can be due to the presence of a heat source 

like a torch or sun on one side of the vessel. The pressure and thermal loadings at the inner surface of the cylinder 

can be due to a high-pressure fluid flow. All material properties are considered to be constant in the cylinder 

thickness (Fig. 1). 
The selected material for the pressurized cylinder is 316 SS. Table 1. shows the chemical composition of 316 SS. 

Also, the average size of grains in this alloy is 77.7 micrometres. Refer to the reference [25] for more details about 

the construction and composition of this material. 

The thermal expansion coefficient and the elastic modulus as temperature dependent parameters for austenitic 

stainless steel AISI type 316SS are listed in Table 2. [26] 
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Fig.1 

Schematic of the thick-walled cylinder under non-

axisymmetric thermal and mechanical loads. 

 

Table 1  

Material composition of stainless-steel 316 SS [25]. 

Wt. (%) Element Wt. (% ) Element 

0.14 N 12.15 Ni 

0.025 C 0.2 Si 

1.74 Mn 0.004 S 

17.57 Cr 0.02 P 

2.53 Mo Bal. Fe 

 

Table 2  

Mechanical and physical properties of austenitic stainless steel AISI type 316LN [26]. 

T °C 400 500 600 700 800 
α 10-6/°C 17.37 17.78 18.12 18.43 18.72 

E GPa 172.6 164.5 155.0 144.1 131.4 

3    MATHEMATICAL MODEL AND GOVERNING EQUATIONS  
3.1 The general relationships of two-dimensional thermo-mechanical analysis of time-dependent creep in thick-

walled cylinders 

The relationship between stress and strain (Hook’s law) with respect to the presence of symmetry in the cylinder can 

be written as follows: 

 

     2 2     3 2 ,
c c

rr rr rr
T

 
                      (2a)  

 

     2 2    3 2 ,
c c

rr rr
T

  
                      (2b)  

 

   ,
zz rr

E T


          (2c)  

 

2 2  ,
c

r r r  
         (2d)  

 

where, ,rr   and 
r are radial, tangential and shear strains, respectively. ν, α and E are the Poisson ratio, the 

thermal expansion coefficient and the modulus of elasticity, respectively. T is the temperature distribution as a 

function of radial and tangential coordinates and c c

rrand


   ,
r

c


  are radial, tangential and shear creep strains, 

respectively. Lame coefficients are represented by λ and μ and are defined as: 

 

 2 1

E






 

               

     (3a) 

 

  1 2 1

E 


 




 
 

               

     (3b) 

 

The material behaviour is assumed to be incompressible during the creep process. 
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0c c c

rr zz                (4) 

 

So by considering the plane strain conditions (Eq. (1)) we have: 

 
c c

rr              (5) 

 

The strain-displacement equations are written as follows: 

 

 ,rr u r
r

 





 
          

(6a) 

 

   
1

, ,u r v r
r

  


 
  

 
 

          

(6b) 

 

   
 ,1 1

, ,
2

r

v r
u r v r

r r r



  



  
   

  
 

          

(6c) 

 

In which u and v are indicating the displacements in the radial and tangential directions, respectively. For the 

assumed thick-walled cylindrical vessel, the equilibrium equations in the absence of body forces are written as 

follows: 

 

1
0,rr

rr r
r r r




 
 



 
  

 
 

          

(7a) 

 

21
0,r

r
r r r


 


 



 
  

 
 

          

(7b) 

 

To obtain the governing differential equations of the problem, Eqs. (2), (5) and (6) are used. By substituting 

these equations into Eqs. (7), the following relations are obtained: 

 
2 2 2

2 2 2 2
2 2 c

rru u u v u v
r r r r rr r r r

   
   

 

               
                

                  
2 2

2 2 2

3 2
  3 2 c

rT T u v v
r r r r rr r



   
  

  

               
               

                 

2

2 4 2
  0c

rru u
r r r r

  


 
    

 
 

 

 

         

 (8a) 

 
2 2 2

2 2 2 2 2 2

3
2 c

ru u v v v u v
r r r r rr r r r r



     
  

   

                  
                  

                    
2 2

2 2

2 2 3 2 4
  0;c c

rr rv u T T
r r r r r rr



     
 

   

            
               

             
 

 

 

  (8b) 

 

The achieved system of Navier differential equations (Eqs. (8)) is a non-homogeneous differential equation 

system. To solve these equations, a semi-analytical method is employed. In this method, a semi-analytical solution 

of differential equations is obtained containing creep strains for appropriate time intervals considering thermo-

mechanical boundary conditions. 

As time passes and the process of creep progresses, the history of stresses and displacements in the thick-walled 

cylinder are obtained. The procedure of numerical solution is presented as a step by step routine in the next section 
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of this paper. Solving equations at zero time represents the initial elastic solution of the problem, which is obtained 

by ignoring creep strain expressions in the equations. 

Based on Prandtl-Reuss relationships, the creep strain rates could be written at any time in terms of current 

stresses and uniaxial creep rate of the material as follows [27]: 

 

  2   ,
2

c

c e

rr rr zz

eff




   


    

 

  (9a) 

 

  2  ,
2

c

c e

rr zz

eff

 


   


    

 

  (9b) 

 

3
;

2

c

c e

r r

eff

 


 


  

 

  (9c) 

 

where c

e  and eff  are effective strain rate and effective stress, respectively. The constitutive model for describing 

the creep behaviour of material in this work is based on the Bailey-Norton model, which is commonly used for 

materials creep model [27] and is written as follows: 

 
0 1. ;

n nc

e effB t      (10) 

 

In the above relation, n0, n1 and B are material creep parameters, which are determined based on the type of 

material and its operational conditions. In this case the von-Mises effective stress is defined as follows: 

 

2 2 2 23 ;eff rr zz rr rr zz zz r                     
  (11) 

 

To obtain the history of stresses and displacements, a numerical procedure is used based on the successive elastic 

method. 

3.2 Analysis of two-dimensional heat transfer problem in a thick-walled cylindrical vessel 

The heat transfer equation for two-dimensional steady state condition of the pressurized cylindrical vessel, 

regardless of the heat generation term, is written as follows [28]: 

 
2 2

2 2 2
0;

K K
T K T T

r r r r 

      
      

       
                   a r b        

 
  (12) 

 

In the above relation, K is the heat transfer coefficient and is assumed to be constant. In order to obtain 

generalized solution of the heat transfer equation, boundary conditions are considered as a combination of the 

convection and conduction heat transfer. 

 

 11 12 1, 
, 

,
a

a

C T C T f
r




 

   
 

     
 

(13a) 

 

 21 22 2, 
, 

;
b

b

C T C T f
r




 

   
 

     
 

(13b) 

 

In the above equation, Cij are constants, which are related to the convection coefficients and thermal 

conductivity. The thermal boundary conditions are determined using the functions of  1f  and  2f  for the inner 

and outer surfaces of the cylinder, respectively. 
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Since ( , )T r   is assumed as a periodic function of  , it can be written as a complex Fourier series: 

 

   , i m

m
m

T r T r e 


 



        
 

(14) 
 

In the above equation,  mT r  are the complex Fourier series coefficients and are defined as follows: 

 

   
1

,   
2

i m

mT r T r e d 

  


  

        
 

(15) 

 

By substituting the Eq. (14) into the heat transfer equation (Eq. (12)), the following relation is obtained: 

 

     
2

2 2

2
0m m m

d d
r T r r T r T r m

dr dr

  
    

   
     

 
(16) 

 

Eq. (16) is the Euler equation, so its general solution is assumed as follows: 

 

 m mT r A r        (17) 

 

By substituting Eq. (17) into Eq. (16), the characteristic equation is obtained. 

 
2 2 0m        (18) 

 

Considering the roots of the characteristic equation, the general solution of the heat transfer equation is achieved: 

 

  1 2

m m

m m mT r A r A r        (19) 

 

Substituting Eq. (19) into Eq. (14) gives: 

 

   1 2,   m m i m

m m
m

T r A r A r e 


  



         
 

(20) 
 

In order to obtain the 
1mA  and 

2mA , the thermal boundary condition relations are used. 

 

   1 21 2 12 1

i m

m m
m

A O A O e f 


 



           
 

(21a) 
 

   1 22 2 11 2  i m

m m
m

A O A O e f 


 



           
 

(21b) 
 

where Oij coefficients are defined as: 

 

 1

11 21 22 ,m mO C b C b m     
 

 1

12 11 12 ,m mO C a C a m       

 1

21 11 12 ,m mO C a C a m     

 1

22 21 22 ;m mO C b C b m      

 
 
 

(22) 

 

Considering Eq. (21), it can be seen that the right-hand side terms of the equations are, in fact, the coefficients of 

the complex Fourier series of the left-hand side of these equations, so: 
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 1 21 2 12 1
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
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 1 22 2 11 2

1
  

2

i m

m mA O A O f e d 

  


  
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(23b) 

 

Eq. (23) is a system of equations with unknown coefficients 
1mA  and 

2mA , which can be determined using the 

Cramer rule as follows. 
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1

21 11 12 22
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2
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m
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A

O O O O

 
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

  

      



 

 
(24a) 
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2
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m
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A
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 
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

  

      



 

 
(24b) 

3.3 Analysis of creep problem for thick-walled cylinder under non-axisymmetric thermo-mechanical loading 

In order to solve Navier equations, complex Fourier series expansion is employed for radial and tangential 

displacements, as well as radial and shear creep strains: 

 

   ,   ,i m

m
m

u r u r e 


 



    
 

(25a) 
 

   ,   ,i m

m
m
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

 
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(25b) 
 

   ,,   ,c c i m

rr rr m
m
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

 



    
 

(25c) 
 

   ,,   ;c c i m

r r m
m

r r e 

   


 



    
 

(25d) 
 

In the above equations,  mu r ,  mv r ,  ,

c

rr m r  and  ,  c

r m r  are the coefficients of the complex Fourier 

series and are defined as: 

 

   
1

  ,
2

i m

mu r u r e d 

  


  

    
 

(26a) 

 

   
1

  ,
2

i m

mv r v r e d 

  


  

    
 

(26b) 

 

   ,

1
  ,

2

c c i m

rr m rrr r e d 

   


  

    
 

(26c) 

 

   ,

1
  ,

2

c c i m

r m rr r e d 

     


  

    
 

(26d) 

 

Substituting Eq. (25) and Eq. (14) into the Navier equations (Eq. (8)) and after some simplification gives: 
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 
       22

2 2 2

22 3
2 m m m m m

mi m i md d d
u u v v u

r dr r drdr r r

       
 

        
         

      

  1 1

, , , 1 2

2
  2 3 2 ,c c c m m

rr m r m rr m m m

d i m
m A r A r

dr r r
          

      
 

 

 
 

(27a) 

 

      
2 2

2

2 2 2

1 3
 m m m m m

m mi m i md d d
v u v v u

r dr r drdr r r

    


       
        

      

  1 1

, , , 1 2

2
  2   3 2 ;c c c m m

r m rr m r m m m

d i m
i m A r A r

dr r r
           

       
 

 

 
 

(27b) 

 

Eq. (27) form a system of ordinary differential equations that have general and particular solutions. The general 

solution is considered as follows: 

 

  ,gu r E r   (28a) 

 

  ,gv r C r   (28b) 

 

Substituting Eq. (28) into Eq. (27) leads to the following equations: 

 

   2 2 22 2 3   0m E i mC                    (29a) 

 

   2 2 23 0i mE m m C                 (29b) 

 

Non-trivial solution of these equations is as follows: 

 

 

 
 

 

2 2 2

22 2 2

2 2 3
  0

3

m

mm m

          

       

           
    

        

 

 
(30) 

 

Eq. (30) has four distinct roots, 
1m  to 

4m . Therefore, the general solution of radial and tangential 

displacements could be written as follows: 

 

   

4

 
1

,m jg

m m j
j

u r E r




   
 

(31a) 

 

   

4

   
1

  ,m jg

m m j m j
j

v r D E r




   
 

(31b) 

 

In Eq. (31b),  m jD  represents the relationship between the constants  m jE  and  m jC  and is defined by (29a) as 

follows: 

 

 
 

2 2 22 2
;             1,2,3,4

3

mj mj

mj

mj mj

i m
D j

m

      

     

   
 

  
 

 
(32) 

 

The following relationships are considered as the particular solution of equations: 

 

  2 1 1

1 2 3 4 ,p m m

m m m m mu r L r L r L r L r       (33a) 
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  2 1 1

5 6 7 8 ;p m m

m m m m mv r L r L r L r L r     
 

(33b) 

 

Substituting these relationships into Eq. (27) leads to the following relationships: 

 

1 1 1 15 51 1

2 2 3 3 4 4 6 6 7 7 8 8 m m m mmm

m m m m m m

c Lc L
c L c L r c L r c L c L r c L r

r r

           

 

 10 ,  , 1 1

9 , 11 12

2
    ,

c c

r m rr mc m m

rr m

c i md
c c r c r

dr r

 
   

   
    

 
 

 
 

(34a) 

 

1 1 1 113 1 17 5

14 2 15 3 16 4 18 6 19 7 20 8 m m m mm m

m m m m m m

c L c L
c L c L r c L r c L c L r c L r

r r

           

 

 22 , ,  1 1

21 ,  23 24

2
    ;

c c

rr m r mc m m

r m

c i md
c c r c r

dr r





 
   

   
    

   
 

 
 

(34b) 

The definition of the coefficients 
1c  to 

24c  is given in the appendix. Equating the coefficients of the same power 

in Eq. (34), the following equations are obtained: 

 

 1 1 5 1 10 ,  ,2 ,c c

m m r m rr mc L c L c i m      

 

2 2 6 2 9 , ,c

m m rr m

d
c L c L c

dr


 
   

   

3 3 7 3 12 ,m mc L c L c 
 

4 4 8 4 11,m mc L c L c 
 

 13 1 17 5 22 , , 2 ,c c

m m rr m r mc L c L c i m      

 

14 2 18 6 21 ,  ,c

m m r m

d
c L c L c

dr


 
   

   

15 3 19 7 24 ,m mc L c L c 
 

16 4 20 8 23 ,m mc L c L c   

 
 
 
 
 
 

(35) 

 

The solution of the above system of algebraic equation by using the Cramer rule has the following results: 

 

   17 10 5 22 , 5 22 10 17 , 

1

17 1 13 5 17 1 13 5

2 2
,

c c

rr m r m

m

c c i mc c c c i mc c
L

c c c c c c c c

    
 

 
 

6 21 ,  9 18 , 

2

14 6 18 2

,

c c

r m rr m

m

d d
c c c c

dr dr
L

c c c c

 
   

   
   




 

7 24 12 19 8 23 11 20

3 4

15 7 19  3 16 8 20 4

, ,m m

c c c c c c c c
L L

c c c c c c c c

   
   

 
 

   13 10 1 22 ,  13 10 22 1 , 

5

13 5 17 1 13 5 17 1

2 2
  ,

c c

r m rr m

m

i mc c c c c c i mc c
L

c c c c c c c c

    
  

   
 

14 9 ,  21 2 , 

6

14 6 18 2

,

c c

rr m r m

m

d d
c c c c

dr dr
L

c c c c

 
   

   
   


  

15 12 24 3 16 11 23 4

7 8

15 7 19 3 16 8 20 4

, ;m m

c c c c c c c c
L L

c c c c c c c c

 
 

 
 

 
 
 
 
 
 
 
 

(36) 
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The complete solution for radial and tangential displacements is equal to the sum of the general and particular 

solutions: 

 

     ,g p

m m mu r u r u r   (37a) 

 

     ;g p

m m mv r v r v r   (37b) 

 
Therefor: 

 

 
4

2 1 1

1 2 3 4
1

m  j m m

m m  j m m m m
j

u r E r L r L r L r L r ,
   



       
 

(38a) 

 

   

4
2 1 1

    5 6 7 8
1

  ;m j m m

m m j m j m m m m
j

v r D E r L r L r L r L r
   



       
 

(38b) 

 

For the special case of m = 0, the Eq. (27) becomes two independent differential equations, and thus the 

coefficients  m jL  and  m jD should be redefined: 

 
2

0 0 0 ,0 ,02 2

1 1 2 2
,

2

c c

rr rr

d d d
u u u

r dr dr rdr r


 

 

   
      

   
 

 
(39a) 

 
2

0 0 0 ,0 ,02 2

1 1 2
2 ;c c

r r

d d d
v v v

r dr dr rdr r
  

   
      

   
 

 
(39b) 

 

Assuming the power terms for the general solution and the power and logarithmic terms for the particular 

solution, the final solution of the differential equations (Eq. (39)) is obtained as follows: 

 

    0  

2
2

0 0  0,1 0,2
1

ln 1 ,jg

j
j

u r E r L r r L r




       
 

(40a) 

 

    0  

4
2

0 0  0,3 0,4
3

ln 1 ;jg

j
j

v r E r L r r L r




      
 

(40b) 

 

The coefficients of the above relations are defined as: 

 

0 1 0 2 0 3 0 41,    1,    1,    1;          (41) 

 

0,1 , 0 0,2 , 0 0,3 , 0 0,4 , 0

4 2 2
,      ,    2 ,      ;

2 6 3 3

c c c c

rr rr r r

d d
L L L L

dr dr
 

 
   

   

 
    

   
 

 
(42) 

 

Substituting the particular and general solutions of Navier equations into the Eq. (37), the following relations are 

obtained for the radial and tangential displacements: 

 

    
 

0  

4
2

2
  1 22

1
0  0,1 0,2

1 1 1

3 4

, ln 1   ,

  ,

m j

j m j m m i m
j

j
j m m m

m m

E r L r L r
u r E r L r r L r e

L r L r



 


 


    

 
           
 
  

 

 
(43a) 

 

    
 

0  

4
2

4
    5 62

1
0  0,3 0,4

3 1 1

7 8

 
, ln 1     ,

  ;

m j

j m j m j m m i m
j

j
j m m m

m m

D E r L r L r
v r E r L r r L r e

L r L r



 


 


    

 
          
 
  

 

 
(43b) 
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Substituting Eq. (43) into the strain-displacement and stress -strain relations, the stresses and strains are 

calculated. 

 

   
   

 

0  

4
1

2
1     1 2

1
0  0  0,1 0,2

1

3 4

2
, ln 2   ,

  1 1 ,

m j

j m j m j m m i m
j

rr j j
j m m m

m m

E r L L r
r E r L r L r e

L m r L m r



 


  




  


  

 
           
 
      

 

 
(44) 

 

    

 

 

 

 

 

 

0  

4

   
1

2 5 12
20  0,1 0,2

1 6 2

1

7 3

1

8 4

1

1
, ln 1   ,

m j

j

m j m j
j

m m i m

j
j m m m

m

m m

m

m m

i m D E r

i mL L r
r E r L r r L r e

i mL L rr

i mL L r

i mL L r



 

 




 

 





  
     

  
    

           
  

    
       

 

 
 
 

(45) 

 

   

  
 

 

 

 

0  

4

     
1

4 22
1 2 60  0  0,3 0,4

3 1

3 7

1

4 8

1

1
, 1   ,

2

m j

j

m j m j m j
j

i m
m m mr j j

j m m

m m

m

m m

D i m E r

i mL r i mL L rr E r L r L r e
r

i mL mL r

i mL mL r



 





  




 

  



  
      

  
             

    
  
      

 

 
 
 

(46) 

           

    

      

     

0  

 

2
1

0  0  0,2 0,1
1

4
1

     
1

1 2 3 4

5 1 6 2 7 3

8

, 2 3 4 2 ln

2 1

2 2 1 1

                   

j

m j

rr j j
j

m j m j m j
j

m m

m m m m

m
m m m m m m m

m

r E r L r r L

E r i m D

L L r L m r L m r

i mL L i mL L r i mL L r

i mL





          

   

 


















         

     

        

 
       


  

   
4

,  1 2

,

2 3 2

i m

m

m

c m m

rr m m m

e

L r

A r A r



   

 



 
 
 
 
  

  
     

 
      

 

 
 
 
 
 

(47) 

 

             

   

    

 
   

   

0  

 

2
1

0  0  0,2 0,1
1

4
1

     
1

1 2 3 4

5 1 6 2

7 3 8 4

, 2 3 4 2 ln 2

2 1

2 1 1

 

2

2

j

m j

j j
j

m j m j m j
j

m m

m m m m

m m m m m

m m

m m m m

r E r L r r L

E r i m D

L L r L m r L m r

i mL L i mL L r
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Ignoring creep strains in the above equation leads to a closed form solution for the initial thermoelastic stresses 

at zero time. To determine the unknown coefficients of 
 m jE , it is possible to consider any type of boundary 

conditions for displacements or stresses: 

 

       1 2, ,    , ,u a h u b h    
 

       3 4, ,    , ,v a h v b h    
 

       5 6, ,    , ,rr rra h b h      
 

       7 8, ,    , ;r ra h b h         

 
 
 

(50) 

 

Considering Eqs. (43) to (49), in which there are four unknowns 
 m jE  (j = 1, 2, 3, 4), four boundary conditions 

are necessary to determine the unknowns. These boundary conditions could be chosen from relations (50). Boundary 

conditions could be of displacement, stress type or a combination of both. To apply the boundary conditions (50), 

they must be expanded into complex Fourier series: 

 

          1,...,4i m

j j
m

h H m e j


 



    
 

(51) 
 

In the above equation, the coefficients of the Fourier series 
jH  are defined as follows: 

 

   
1

    
2

i m

j jH m h e d 

  


  

    
 

(52) 

 

Applying the four chosen boundary conditions in the form of the complex Fourier series in displacement or 

stress relations, the unknown coefficients of  m jE are obtained.  

3.4 Successive elastic method 

As discussed in the above section, to obtain the history of strains and stresses a numerical procedure has been 

adopted. According to the successive elastic solution the step by step procedure for numerical creep analysis using a 

semi-analytical method is written as follows: 

1.    Initial thermoelastic solution is obtained using the thermoelastic equations of the thick-walled cylinder 

under a non-axisymmetric thermo-mechanical loading. 

2.   The displacements, strains, and stresses at zero time are obtained from step (1). Also, using the von-Mises 

relationship, the effective stresses are calculated. 

3.   An appropriate initial time interval must be selected for creep analysis. In this work, the first time interval is 

assumed to be 
1 1( )t hr  . 

4.   The effective creep strains ( , )c

e r   are obtained using the Bailey-Norton creep constitutive relation, 

considering the effective stresses calculated in the previous step. 

5.   For the selected time interval, initial estimates of creep strain increments ( , )c

ij r   are obtained using the 

Prandtl-Reuss relationships. 

6.   The total elapsed time of the creep process is calculated as the sum of the time intervals as follows: 

 
1

1

       1, 2, 
i

i k i

k

t t t i




      
 

(53) 

 

7.   The total creep strains are obtained by summation of creep strain increments in each stage. 

8.    Solving the governing differential equations by considering boundary conditions at it , the distributions of 

displacements, strains and stresses are determined. 

9.    Effective creep strains distributions are determined using the Bailey-Norton’s law. 
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10.  New values of the creep strain increments , ( , )c new

ij r   are obtained using the effective stress determined 

in step (8) and effective creep strains increment from step (9). 

11.  Comparing the new values of the creep strain increments calculated in step (10) with the previous assumed 

values to examine the convergence of the creep process.  

12.  If the convergence is not achieved, the new obtained creep strain increments will be considered as the new 

estimates and the process of solution repeated from the step (3) until convergence is achieved. 

13.  If convergence is satisfied, a new time interval will be selected and time is advanced one increment 

( 1)i i  and the solution process is continued from step (3). 

4    NUMERICAL RESULTS AND DISCUSSIONS  

As an illustrative example, consider a thick-walled cylinder made of 316 SS austenitic steel with an inner radius of  

a = 1 (m) and an outer radius of b = 1.2 (m). The Poisson ratio is assumed to be equal to the constant value v = 0.3. 

Considering the temperature range and mechanical and physical properties of 316 SS steel in Table 2., the elasticity 

modulus is assumed to be E = 168 (GPa). Also, the value of the thermal expansion coefficient is considered to be  
α = 1.75e-5 (1/

◦
C). 

The loading conditions for the cylinder are such that the inner surface has a constant temperature equal to 

( ) 400aT C   and the outer surface is exposed to a non-axisymmetric heat flow, so the temperature distribution on 

the outer surface of the cylinder is assumed to be 2( ) 40.(cos( / 2)) 400bT    . The inner surface of the cylinder is 

subjected to an internal pressure Pa=20 (MPa) and the outer surface pressure is assumed to be zero. The inner and 

outer surfaces of the cylinder are free from shear stress.  

In order to validate the thermoelastic solution, Finite Element Method (FEM) is used and the material properties, 

geometry and loading conditions are considered similar to the numerical example. ANSYS Workbench 15.0 

software has been used in 3D mode for the simulation of the thick-walled cylinder. In order to insure about the 

accuracy and efficiency of the FEM model, the mesh independence is verified.  Five sets of mesh with 36653, 

41230, 46531, 50800 and 54734 elements are successively applied for the FEM solution under the non-

axisymmetric loading. Based on the results, the effective stress on the inner and outer surfaces of the cylinder, nearly 

remain constant for the meshes with the number of the elements above 50800. Therefore, the mesh with 50800 

elements is selected in for the FEM solution. Also, in order to reach a better understanding of the non-axisymmetric 

loading effects, a constant temperature ( ) 440bT C   is considered on the outer surface of the cylinder as the 

axisymmetric loading conditions. Bailey-Norton relationship coefficients are presented in Table 3. [29] 

 
Table 3  

Parameters of the Bailey-Norton creep constitutive equation for steel stainless-steel 316. [29] 

B (MPa-n0. hr-n1)  n0 n1 

2.79×10-27
 9.51 1 

 

In Fig. 2, the effective stress distribution in the finite element model of the thick-walled cylinder is observed 

under non-axisymmetric thermal and mechanical loadings.  

 

 

 

 

 

 

 

 

 

 

Fig.2 

Elastic effective stress distribution in FEM model of the thick-

walled cylinder due to non-axisymmetric loads. 
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Figs. 3 and 4 illustrate the effective stress distribution (von-Mises) in the outer and inner radius of the thick-

walled cylinder, respectively, under non-axisymmetric loading for both finite element and thermoelastic semi-

analytical solutions. With these results, it can be concluded that the FEM results for the inner and outer radius of the 

thick-walled cylinder are in good agreement with the results obtained from the semi-analytical solution. The 

difference between the results of FEM and the semi-analytical solution for the inner radius is negligible and has a 
maximum value of 0.25% at θ = 0 and for the outer radius has a maximum value of 2.8% at θ = ± π , which is 

acceptable. In this way, it could be concluded that the obtained relations, differential equations and the solution 

method are reliable. 

 

 

 

 

 

 

 

 

 

Fig.3 

Results of FEM and semi-analytical solutions for elastic 

effective stress distribution on outer radius of thick-walled 

cylinder due to non-axisymmetric loading. 

  

 

 

 

 

 

Fig.4 

Results of FEM and semi-analytical solutions for elastic 

effective stress distribution on inner radius of thick-walled 

cylinder due to non-axisymmetric loading. 

 

Fig. 5 shows the temperature distribution in the cylinder thickness in radial and tangential directions. Figs. 6, 7 

and 8 show radial, tangential, and thermoelastic shear stress due to thermal and mechanical loadings, respectively. 

Considering the boundary conditions, internal pressure and temperature are applied uniformly to the inner surface of 

the cylinder, and the thermal loading on the outer surface of the cylinder has the greatest variation, so, as expected, 

strains and thermoelastic stresses are also consistent with this patterns and has the slightest variations on the inner 

surface and behave on the outer surface in accordance with temperature variations. In accordance with the boundary 

conditions, the radial elastic stress at the inner surface of the cylinder is compressive and equals to 20 MPa and at 

the outer surface of the cylinder equals to zero. The elastic shear stress on the inner and outer surfaces of the 

cylinder is zero.  

 

 

 

 

 

 

 

 

 

 

Fig.5 

Thermal field distribution in thick-walled cylinder. 
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Fig.6 

Radial elastic stress distribution in thick-walled cylinder due to 

non-axisymmetric thermal and mechanical loadings. 

  

 

 

 

 

 

 

 

Fig. 7  

Circumferential elastic stress distribution in thick-walled 

cylinder due to non-axisymmetric thermal and mechanical 

loadings. 

  

 

 

 

 

 

 

 

 

 

Fig.8 

Shear elastic stress distribution in thick-walled cylinder due to 

non-axisymmetric thermal and mechanical loadings. 

 

Fig. 9 shows the distribution of effective thermoelastic stress (von-Mises) across the cylinder thickness. As 
shown in this figure, the maximum effective stress as the resultant of stress components occurs at θ = 0 and at the 

inner surface of the cylinder, which indicates the critical point in the cylinder thickness.  

 

 

 

 

 

 

 

 

 

Fig.9 

Effective elastic stress distribution in thick-walled cylinder due 

to non-axisymmetric thermal and mechanical loadings. 

 
Figs. 10 and 11 present the effective stress histories (von-Mises) of non-axisymmetric loading at θ = 0 and 

axisymmetric loading along radius from initial elastic up to 30 years of creep process. In both cases, the maximum 

effective stress occurs at the inner half of the cylinder thickness. By comparing creep behaviour for non-
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axisymmetric and axisymmetric loadings, it can be seen that for non-axisymmetric the effective stress decreases at 

the inner surface, and increases at the outer surface of the cylinder, however for axisymmetric loading the effective 

stress decreases throughout thickness of the cylinder. In the outer radius, the effective stress caused by non-

axisymmetric loading is about 9.5% higher than the effective stress caused by axisymmetric loading. So, it can be 

concluded that consideration of non-axisymmetric load conditions has a great influence on the distribution of creep 

stresses and strains.  

 

 

 

 

 

 

 

 

 

Fig.10 

Redistribution of the effective creep stresses at θ=0 of the 

thick-walled cylinder due to non-axisymmetric thermal and 

mechanical loads for 30 years of creep process. 

  

 

 

 

 

 

 

 

 

 

Fig.11 

Redistribution of the effective creep stresses of the thick-walled 

cylinder due to axisymmetric thermal and mechanical loads for 

30 years of creep process. 

 

The effect of internal pressure on the distribution of effective creep stress at the inner and outer surface of the 

cylinder after 10 years of the creep process is presented in Figs. 12 and 13, respectively. The reduction of internal 

pressure has led to a reduction in the effective stress at the inner and outer surfaces of the cylinder. Also, at the outer 
surface of the cylinder, reducing internal pressure has led to a significant variation in stress at θ = ±π /2. Since 

effective stress simultaneously is a direct function of thermal and mechanical loadings, so, reducing the mechanical 

loading increases the effect of the thermal loading on the effective stress at the outer surface of the cylinder.  

 

 

 

 

 

 

 

 

 

 

Fig.12 

The effects of the internal pressure on the distribution of 

effective creep stress at outer surface (r = b) of thick-walled 

cylinder after 10 years of creep process. 
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Fig.13 

The effects of the internal pressure on the distribution of 

effective creep stress at inner surface (r = a) of thick-walled 

cylinder after 10 years of creep process. 

 

Figs. 14 and 15 show the effect of maximum temperature gradient on the distribution of effective creep stress at 

the outer and inner surfaces of the cylinder, respectively, after 10 years of creep process. Increasing the maximum 

temperature gradient in the cylinder thickness has led to an increase in effective stress at the cylindrical inner 
surface, and this increase is observed for θ between -π /2 and π /2. Also, at the outer surface of the cylinder, 

increasing the maximum temperature gradient for θ between -π/2 to π/2 increases the effective stress and in other 

places leads to the reduced stresses. These can be due to the distribution of thermal boundary conditions which 
significantly affect the cylinder from one side (θ between -π /2 and π /2). The effect of temperature increase on the 

effective stress at the inner surface of the cylinder is about 90% higher than its outer surface which is due to the 

combined effect of mechanical and thermal stresses. 

 

 

 

 

 

 

 

 

 

Fig.14 

The effects of the temperature on the distribution of effective 

creep stress at outer surface (r = b) of thick-walled cylinder 

after 10 years of creep process. 

  

 

 

 

 

 

 

 

 

 

Fig.15 

The effects of the temperature on the distribution of effective 

creep stress at inner surface (r = a) of thick-walled cylinder 

after 10 years of creep process. 

5    CONCLUSIONS 

In this research, the effects of the non-axisymmetric loading on the time-dependent creep phenomena (based on 

Bailey–Norton’s law) was investigated using the successive elastic solution as a semi-analytical method in a thick-

walled cylindrical vessel made of 316 SS stainless steel. Considered loadings were due to a non-axisymmetric 

thermal field and a constant internal temperature and pressure. The solution method was based on the successive 

elastic method and the complex Fourier series was used for solving governing differential equations at each time 
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step. In this way, it is possible to consider any kind of mechanical and thermal boundary conditions. In order to 

confirm the accuracy of the obtained results, the thermoelastic model of the cylinder was solved using FEM and the 

results were in a good agreement with the semi-analytical solution results. The distribution of radial, tangential, 

shear and effective stresses were presented and the effects of temperature and pressure on the distribution of 

effective creep stress were obtained. Comparison of creep behaviour under axisymmetric and non-axisymmetric 

loading conditions shows that non-axisymmetric loading has a great influence on the redistribution of effective creep 

stress.  

APPENDIX  

The coefficients 
1c  to 

24c  in Eq. (34) are defined as: 
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