Nonlocal Bending Analysis of Bilayer Annular/Circular Nano Plates Based on First Order Shear Deformation Theory
Subject Areas : EngineeringSh Dastjerdi 1 , M Jabbarzadeh 2
1 - Department of Mechanical Engineering, Mashhad Branch, Islamic Azad University
2 - Department of Mechanical Engineering, Mashhad Branch, Islamic Azad University
Keywords:
Abstract :
[1] Androulidakisa Ch., Tsouklerib G., Koutroumanisa N., Gkikasb G., Pappasb P., Partheniosb K., Papagelisa J., Galiotisb C., 2015, Experimentally derived axial stress–strain relations for two-dimensional materials such as monolayer graphene, Carbon 81:322-328.
[2] Reddy J.N., 2011, Microstructure-dependent couple stress theories of functionally graded beams, Journal of the Mechanics and Physics of Solids 59: 2382-2399.
[3] Akgöz B., Civalek Ö., 2013, A size-dependent shear deformation beam model based on the strain gradient elasticity theory, International Journal of Engineering Science 70: 1-14.
[4] Akgöz B., Civalek Ö., 2013, Buckling analysis of functionally graded micro beams based on the strain gradient theory, Acta Mechanica 224: 2185-2201.
[5] Lam D.C.C., Yang F., Chong A.C.M., Wang J., Tong P., 2003, Experiments and theory in strain gradient elasticity, Journal of the Mechanics and Physics of Solids 51: 1477-1508.
[6] Ke L.L., Yang J., Kitipornchai S., 2012, Free vibration of size dependent Mindlin micro plates based on the modified couple stress theory, Journal of Sound and Vibration 331: 94-106.
[7] Akgöz B., Civalek Ö., 2011, Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro scaled beams, International Journal of Engineering Science 49: 1268-1280.
[8] Akgöz B., Civalek Ö., 2013, Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory, Composite Structures 98: 314-322.
[9] Yang F., Chong A.C.M., Lam D.C.C., Tong P., 2002, Couple stress based strain gradient theory for elasticity, International Journal of Solids and Structures 39: 2731-2743.
[10] Eringen A.C., Edelen D.G.B., 1972, On nonlocal elasticity, International Journal of Engineering Science 10: 233-248.
[11] Eringen A.C., 1983, On differential equations of nonlocal elasticity, solutions of screw dislocation, surface waves, Journal of Applied Physics 54: 4703-4710.
[12] Eringen A.C., 2002, Nonlocal Continuum Field Theories, Springer-Verlag, New York.
[13] Eringen A.C., 2006, Nonlocal continuum mechanics based on distributions, International Journal of Engineering Science 44: 141-147.
[14] Anjomshoa A., Shahidi A.R., Shahidi S.H., Nahvi H., 2014, Frequency analysis of embedded orthotropic circular and elliptical micro/nano-plates using nonlocal variational principle, Journal of Solid Mechanics 7(1): 13-27.
[15] Kitipornchai S., He X.Q., He, K.M., Liew, 2005, Continuum model for the vibration of multilayered graphene sheets. Physical Review B 72: 075443.
[16] He X.Q., Kitipornchai S., Liew K.M., 2005, Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction, Journal of the Mechanics and Physics of Solids 53: 303-326.
[17] Liew K.M., He X.Q., Kitipornchai S., 2006, Predicting nanovibration of multi-layered graphene sheets embedded in an elastic matrix, Acta Materialla 54: 4229-4236.
[18] Ghorbanpour Arani A., Kolahchi R., Allahyari S.M.R., 2014, Nonlocal DQM for large amplitude vibration of annular boron nitride sheets on nonlinear elastic medium, Journal of Solid Mechanics 6(4): 334-346.
[19] Scarpa F., Adhikari S., Gil A.J., Remillat C., 2010, The bending of single layer graphene sheets: The lattice versus continuum approach, Nanotechnology 21: 125702.
[20] Murmu T., Pradhan S.C., 2009, Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory, Computational Material Science 46: 854-859.
[21] Ke L.L., Xiang Y., Yang J., Kitipornchai S., 2009, Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory, Computational Material Science 47: 409-417.
[22] Dong Y.X., LIM C.W., 2009, Nonlinear vibrations of nano-beams accounting for nonlocal effect using a multiple scale method, Science in China Series E, Technological Sciences 52: 617-621.
[23] Ansari R., Rajabiehfard R., Arash B., 2010, Nonlocal finite element model for vibrations of embedded multi-layered graphene sheets, Computational Material Science 49: 831-838.
[24] Pradhan S.C., Phadikar J.K., 2009, Small scale effect on vibration of embedded multilayered graphene sheets based on nonlocal continuum models, Physica Letter A 373: 1062-1069.
[25] Pradhan S.C., Kumar A., 2010, Vibration analysis of orthotropic graphene sheets embedded in Pasternak elastic medium using nonlocal elasticity theory and differential quadrature method, Computational Material Science 50: 239-245.
[26] Yang J., Ke L.L., Kitipornchai S., 2010, Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory, Physica E 42: 1727-1735.
[27] Shen L., Shen H.S., Zhang C.L., 2010, Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments, Computational Material Science 48: 680-685.
[28] Golmakani M.E., Rezatalab J., 2014, Nonlinear bending analysis of orthotropic nanoscale plates in an elastic matrix based on nonlocal continuum mechanics, Composite Structures 111: 85-97.
[29] Mohammadi M., Goodarzi M., Ghayour M., AlivandS., 2012, Small scale effect on the vibration of orthotropic plates embedded in an elastic medium and under biaxial in-plane pre-load via nonlocal elasticity theory, Journal of Solid Mechanics 4(2): 128-143.
[30] Bellman R.E., Casti J., 1971, Differential quadrature and long-term integration, Journal of Mathematical Analysis & Applications 34: 235-238.
[31] Bellman R.E., Kashef B.G., Casti J., 1972, Differential Quadrature: A Technique for the Rapid Solution of Nonlinear Partial Differential Equation, Journal of Computational Physics 10: 40-52.
[32] Altekin M., Yükseler R.F., 2011, Large deflection analysis of clamped circular plates, Proceedings of the World Congress on Engineering, London, UK.
[33] Timoshenko S., Woinowsky-Krieger S., 1959, Theories of Plates and Shells, McGraw- Book Company, New York.
[34] Szilard R., 1974, Theory and Analysis of Plates, Englewood Cliffs, Prentice-Hall nc.
[35] Reddy J.N., Wang C.M., Kitipornchai S., 1999, Axisymmetric bending of functionally grade circular and annular plates, European Journal of Mechanical A/Solids 18: 185-199.
[36] Golmakani M.E., 2014, Nonlinear bending analysis of ring-stiffened functionally graded circular plates under mechanical and thermal loadings, International Journal of Mechanical Science 79: 130-142.