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 ABSTRACT 

 In this paper, nonlinear bending analysis of bilayer orthotropic annular/circular 

graphene sheets is studied based on the nonlocal elasticity theory. The equilibrium 

equations are derived in terms of generalized displacements and rotations considering 

the first-order Shear deformation theory (FSDT). The nonlinear governing equations 

are solved using the differential quadrature method (DQM) which is a highly accurate 

numerical method and a new semi-analytical polynomial method (SAPM). The 

ordinary differential equations (ODE’s) are converted to the nonlinear algebraic 

equations applying DQM or SAPM. Then, the Newton–Raphson iterative scheme is 

applied. The obtained results of DQM and SAPM are compared. It is concluded that 

although, the SAPM’s formulation is considerably simple in comparison with DQM, 

however, the results of two methods are so close to each other. The results are validated 

with available researches. The effects of small scale parameter, the value of van der 

Waals interaction between the layers, different values of elastic foundation and loading, 

the comparison between the local and nonlocal deflections and linear to nonlinear        

analysis are investigated.                                                                                            

  © 2016 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 RAPHENE sheets are layers of carbon atoms that are arranged in hexagon forms frequently and regularly 

and lead to extraordinary mechanical, thermal and electrical properties and the high stiffness to inertia ratio. 
These significant properties motivate researchers to employ them within other substances. So, analysis of 

mechanical properties of nanostructures is considerable. 

In recent years, many researchers are persuaded to study the mechanical behavior of nano-structures using 

experimental, molecular simulation and continuum mechanics methods. The experimental method has two major 

restrictions. First, expensive laboratory tools and the second, loading restrictions. Only the axial loading can be 

applied in experimental works. In this case, it can be possible to mention a methodology which was presented by 

Androulidakis et al [1] for deriving true experimental axial stress–strain curves in both tension and compression for 

monolayer graphene. According to the vast computational expenses of nano-structures analyses when using atomic 
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lattice dynamics and molecular dynamic simulations, there is a great interest in applying continuum mechanics for 

analysis of such structures. Comparison between Classical theories in elasticity and the obtained results from 

experimental tasks shows that using of the classical elasticity theory leads to considerable differences between 

results. In recent years various size dependent continuum theories are introduced such as couple stress theory [2], 

strain gradient elasticity theory [3-5], modified couple stress theory [5-8] and nonlocal elasticity theory [10-12]. 

These theories are comprised of information about the inter-atomic forces and internal lengths that is introduced as 

small scale effect in nonlocal elasticity theory [13]. Through these methods, the Eringen nonlocal elasticity theory 

[11] has been used much more than the others. In this theory, the stress at a reference point is a function of the strain 

field at every point in the body. Anjomshoa et al [14] investigated Frequency analysis of embedded orthotropic 

circular and elliptical micro/nano-plates using nonlocal variational principle. They proved that the natural 

frequencies depend on the non-locality of the micro/nano-plate, especially at small dimensions. Kitipornchai et al. 

[15] used the continuum plate model for mechanical analysis of graphene sheets. He et al. [16] described van der 

Waals interaction between the layers of multilayered graphene sheets by an explicit formula based on the continuum 

mechanics and a multiple-elastic beam model. Liew et al. [17] studied the vibration behavior of multilayered 

graphene sheets resting on an elastic matrix based on a continuum-based plate model. Ghorbanpour Arani et al [18] 

applied nonlocal DQM for large amplitude vibration of annular boron nitride sheets on nonlinear elastic medium. 

They concluded that with increasing nonlocal parameter, the frequency of the coupled system becomes lower. 

Scarpa et al. [19] studied both circular and rectangular graphene sheets subjected to point loading based on a special 

equivalent atomistic-continuum model. They found that the rectangular SLGSs show a different distribution of the 

geometrical and mechanical properties, compared to the circular configuration. Murmu and Pradhan [20] developed 

a single elastic beam model for thermo-mechanical vibration of a single-walled carbon nanotube resting on an 

elastic medium based on the nonlocal elasticity theory. Ke et al. [21] investigated the nonlinear free vibration of 

embedded double-walled carbon nanotubes based on the Eringen’s nonlocal elasticity theory and von Karman 

geometric nonlinearity using differential quadrature method. Nonlinear free vibrations of a nano-beam with simply 

supported boundary conditions was studied by Dong and Lim [22] based on nonlocal elasticity theory. Ansari et al. 

[23] investigated the vibrational characteristics of multilayered Graphene sheets with different boundary conditions 

embedded in an elastic medium using finite element method. Pradhan and Phadikar [24] studied vibration analysis 

of multilayered graphene sheets embedded in polymer matrix by using the nonlocal continuum mechanics. Pradhan 

and Kumar [25] investigated the small scale effect on the vibration analysis of orthotropic single layered graphene 

sheets resting on a Winkler-type and Pasternak-type elastic foundation. Nonlinear free vibration of single-walled 

carbon nanotubes based on the Timoshenko beam model was studied by Yang et al. [27]. Shen et al. [27] studied 

nonlinear vibration behavior for a simply supported single layer graphene sheet in thermal environments in order to 

obtain the nonlocal parameter. The nonlinear bending analysis of single-layered graphene sheets has been 

investigated by Golmakani and Rezatalab [28]. They proved that the maximum deflection decreases along the 

increase of nonlocal parameter and also the local and nonlocal elasticity theories were compared. Mohammadi et al 

[29] studied small scale effect on the vibration of orthotropic plates embedded in an elastic medium and under 

biaxial in-plane pre-load via nonlocal elasticity theory. Their results are shown that with the decrease of in-plane 

pre-loads the curves isotropic and orthotropic non-dimensional frequency in approaches close to each other. 

In present study, solutions for nonlinear bending analysis of bilayer orthotropic circular/annular graphene sheets 

are obtained based on the FSDT nonlocal elasticity theory. The DQM and a new semi-analytical polynomial method 

(SAPM) are used to solve the governing equations. To demonstrate the accuracy of obtained results, the results are 

validated with available literatures. Besides, the effect of nonlocal parameter on deflection, the effects of different 

parameters such as linear to nonlinear analysis, the value of van der Waals interaction between the layers, nonlocal 

to local deflection ratio and different types of boundary conditions are investigated. 

2    GOVERNING EQUATIONS   

The geometry of a radially bilayer annular/circular graphene sheet is shown in Fig.1 with thickness h, inner radius 

ir , outer radius or , under uniform transverse loading q that is rested on two parameters Winkler-Pasternak elastic 

matrix. wk  and pk  are the Winkler and Pasternak stiffness coefficients of elastic foundation respectively. The term 

 2 1ok w w  refers to the van der Waals interaction bonds between the layers in Fig. 1(b). ok  is the van der Waals 

stiffness. According to the first-order shear deformation theory of plates, the displacements field can be expressed as 
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follows [35]. (The index i identifies the layers. i=1 refers to the upper layer under transverse load and i=2 to the 

bottom layer that is rested on elastic foundation) 

 

 
(a) 

 
 

(b) 

Fig.1 

Figure of bilayer annular graphene sheet (a) perspective (b) front plane view. 
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The first-order shear deformation theory implies a linear displacement variation through the thickness. The shear 

strain, and hence the shear stress, across the thickness of the plate is not neglected in this theory. However, the shear 

strain is constant across the thickness of the plate. By considering this assumption, the obtained results would have 

small difference with precise results, since the shear stress is known to be parabolic even for simple plate 

geometries. To account for the inaccuracy in the shear strain, a shear correction factor ( s ) is applied so that the 

correct amount of internal energy is predicted by the theory. u and w are the displacement components of the mid-
plane along the r and z directions respectively. Also ψ denotes the rotational function of the transverse normal about 

θ axis. The graphene sheet is assumed to have large amplitude deformation, so the von Karman type strain–

displacement relations are used as [36]: 
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where ri  and i  are the normal strains and rzi  is the shear strain. In nonlocal elasticity theory, the effects of 

small scale and atomic forces come directly to the constitutive equations as material parameters [10]. Eringen 

presented a differential form of the nonlocal constitutive equation from nonlocal balance law as follow [12, 13]: 
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(7) 

 

In which a is the internal characteristic length and 0e  is the material constant which is defined by experiment. 

The parameter  0e a  is the small-scale parameter revealing the small-scale effect on the responses of nano-size 

structures. The value of the small-scale parameter depends on boundary condition, chirality, mode shapes, number 

of walls, and the nature of motions [12]. The nonlocal stresses can be defined by considering Eq. (7) as follows [12]: 
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Also, 2 is the Laplacian operator as follow: 
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The nonlocal force, moment (  , ,NL NL
j jNi Mi j r  ) and shear force L

rQi components are expressed as follows 

[36]: 
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As mentioned before, s  denotes the transverse shear correction coefficient ( 5 / 6s  ). By substituting Eqs. (8-

10) into Eqs. (12, 13) the nonlocal force, moment and shear force components can be defined as follows: 
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 , ,L L
j jNi Mi j r  and L

rQi  are the local in-plane force, moment and the shear force resultants which are 

defined for orthotropic material as: 
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Using the principle of stationary total potential energy, the governing equations as well as the related boundary 

conditions along the edges of annular plate can be obtained. The equations of the total potential energy in case of 

nonlocal form are expressed below [18]: 
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where δ is the variation symbol, U and Ω are the strain energy and potential of applied forces respectively. By using 

the nonlocal stress resultants (12, 13) and the relations between the stress resultants in local and nonlocal forms (14-

18), the equilibrium equations of annular/circular graphene sheet cylindrical coordinates system are obtained as: 
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For sake of generality and convenience, the following non-dimensional terms are introduced: 
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Substituting Eqs. (19-23) in dimensionless form into Eqs. (28-31) gives the equilibrium equations. The Eq. (33) 

is presented for the upper layer under the uniform transverse load. 

 

2 2

2 2

2 2 2

1 1 1
1

2 2

1
1

r r

r

dui dwi ui dui dwi ui

drdr dr r dr r

d ui dwi d wi ui
r

dr dr dr r

 



 
  

   


 

 

     

    

   


   

                                                 

     
              

1
0

dui

r dr



 

 
   

 

 

 

 

 

(32) 

 
2

2

2

2
2

2

1 1 1 1 1 1 1 1 1 1 1
2

2

1 1 1 1 1
1

2

s r
r

r

d w d dw q du dw dw dw

Edr dr r dr r r dr dr dr dr

du dw u d w

dr dr r dr





   
  

  

 


       

         

   

   

                                            

   
         

  2
3 3

2 3 3

2 2 2 2

2 2 2 2

2 1 1 1 1 1 1

1 1 2 1 2 1 1 2 1 1 1

o o

r oo

r

o

k r w w h d u dw dw d w

E rr dr dr dr dr

d u du u d w h d u dw d w

rr dr r dr r dr dr dr





  

 

 

 
   

   

     

       

                                  

   
          

   

3

2 3

2 2
4

4 3 2

11 1 1 1

1 11 1 1 1 2 1 1 1 1 1 1 2 1

2 2

r

r
r

o o o

du u d w

dr r dr r dr

uh du dw d w h du dw u dw h

r dr dr r dr r r dr dr r dr r r






 

   


  

   

    

      

         

    
          

    

       
                          

2
2 2 2

2 2 2 2

3 2

3

1 1 1 1 1 1 1 1 2 1 1 1 1 1 1

2

1 1 1 1

r r

o

r

o

d u dw d w du u dw h du dw u d w

dr dr dr r dr r dr r r dr dr r dr

h d u d w

r r dr dr

 






 

 






         

           

 

  

          
                                      

 

2
3 2

2 3 2 2 3

1 1 1 1 2 1 1 1 2 1

o

dw d w d u du u dw h

dr dr r dr r dr r dr r r





     

        

                                 

 

 

 

 

 

 

 

 

 

 

 

(33) 



651                Nonlocal Bending Analysis of Bilayer Annular/Circular Nano Plates…. 

© 2016 IAU, Arak Branch 

     

2
2 2 2 2 3

2 2 2 2 2 3

2 2

2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1

2

2 1 1

r r

o

o o

r

d u dw d w du u d w h du d w u d w

dr dr dr r dr r dr r r dr dr r dr

k r d w d w

E dr dr r

 


 

 



         

           

 

 

        
                                

 
    

 

2 2 2

2 2 2

2
2 3

2 3 2

11 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1
1

2 2

r

o o

r r

o

h d u dw d w du u d w h

r rdr dr dr r dr r dr

du d w u d w h du dw

dr dr r dr r r dr dr



 

 

  


  

 

     

       

     

      

      
              

     

    
               

2

2 2

2 2

2

1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1

2

r

o

r

o

u dw

r dr

h d u dw d w du u dw

r r dr dr dr r dr r dr

h du dw u

r r dr dr r















 

 

     

       

  

   

   
           

       
                  

        

   
       

2

2

1 2 1
0o o

r

k rd w dw dw

Edr dr dr

  

  

             

 

 

 

 

 

 

 

 

 

(33) 

                             

2 2 2

2

11
1 1 2 0

12 12

r
r r s

id i d i i d i i d i dwi
i

dr dr r r dr r r dr dr


 

         
      

 

      


        

          
                            

          

 

 

(34) 

3    SOLUTION   

Two methods are applied to solve the obtained governing equations. First, the DQ that is a highly accurate 

numerical method is used as many researchers have used this method in their researches. Also, a new semi-

analytical polynomial method (SAPM) is introduced by authors. SAPM has all the premiums of DQM such as 

remarkable accuracy and high rate of convergence and does not have the DQM’s weaknesses. 

3.1 Differential quadrature method (DQM) 

First, the differential quadrature method (DQM) is used to solve the equilibrium equations for different boundary 

conditions. The DQM was proposed by Bellman and coworkers for solving differential equations [30-31]. This 

method is highly accurate, convenient and capable to solve the partial differential equations, so, many researchers 

have used the DQM to analyze the sets of ordinary and partial differential equations system. In this method, the 

derivatives of a function at any grid points is approximated using weighted sum of all the functional values at certain 

points in the whole computational domain. 

Using the DQM, derivatives of a function f(r) at point r can be defined as following linear sum of the function 

values: 
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      In which, N is the number of grid points along r direction. It is more offered to use the grid point distribution                                                                           
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which is based on Gauss-Chebyshev-Lobatto points to gain more accurate results [28]. According to the Gauss-

Chebyshev-Lobatto grid point’s distribution, the coordinates of the grid points are as follow: 
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(37) 

 

Using the DQM, the set of differential equations is converted to nonlinear algebraic equations system. Now, this 

system can be solved by using several numerical methods such as Fixed Point or Newton-Raphson Method. In this 

paper, because of considerable accuracy and high rate of convergence, the Newton-Raphson method is applied. 

3.2 Semi analytical polynomial method (SAPM) 

The SAPM which is innovated by authors, is an extremely simple method for solving the ordinary and partial 

differential equations based on the definition of polynomials. Some of the privileges of this method can be classified 

as follows: 

- The formulation is considerably simpler than DQM. 

- The accuracy is the same as DQM. 

- Computer programming is extremely simpler and the processing time is shorter in comparison with DQM. 

Formulation is presented for solving the ordinary differential equations. Consider a general ordinary differential 

equation as follow: 
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The domain i or r r   is divided to N grid point. The function f(x) is defined in presented method as follow: 
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Substituting Eq. (39) into Eq. (38) the differential equation will be converted to algebraic equation as follow: 
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(40) 

 

For an n order differential equation, it is needed the number of (n) boundary conditions in boundary points ir and or . 

For example in a second order differential equation the value of function f(x) or derivation f(r ) must be known in 

boundaries (dark points in Fig. 2.). Consequently, two algebraic equations in boundaries would be determined and 

the rest of algebraic equations can be derived from Eq. (40) in inner grid points (bright points in Fig. 2.). 

 

 

 

 

Fig.2 

The division of one directional domain for ODE problems. 

 

Now there are a set of (N) algebraic equations and (N) unknown constants , 1.. .ia i N  The constants ia  should be 

substituted in Eq. (38), then the function f(r) will be determined. This is one of the simplest methods for solving the 

ordinary differential equations. The main concept of SAPM can be illustrated in Flowchart .1. 
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Flowchart 1 

Procedure of computation for SAPM. 

 

 

If there is a set of ordinary differential equations, the procedure is similar to the mentioned explanation. Now, 

according to the mentioned procedures for SAPM, the functions ,u w   and    can be introduced below: 

 

 
 12

1 2 3 ...
N

Nu a a r a r a r
              (41) 

 

 12
1 2 3 2...

N
N N N Nw a a r a r a r


               

(42) 

 
 12

2 1 2 2 2 3 3...
N

N N N Na a r a r a r


                  (43) 

 

Now by substituting ,u w 
 and    as polynomial functions into Eqs. (32-34), the differential equations are 

converted to algebraic equations that can be solved by use of a numerical method such as Newton-Raphson method. 

4    BOUNDARY CONDITIONS    

In this paper, the boundary conditions are considered for the simply supported (S), clamped (C) and free (F) edges in 

,i or r r . So, the plate can be defined with two boundaries in ,i or r r  as CC, SS, FS, FC and etc. The first letter 

refers to the boundary condition at ir r  and the second one at or r . (Fig. 3.) 
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Fig.3 

Definition of boundary conditions. 

5    NUMERICAL RESULTS   

First, it is considered a single layer annular graphene sheet to check the rate of convergence of DQM and SAPM. 

Fig. 4. shows that the desirable results are obtained with only nine grid points along the r direction. Also, it is proved 

that the accuracy of SAPM method is similar to DQM, whereas SAPM is extremely simpler and faster. The material 

properties of the plate are as follows: / 0.2; 0.34nmi or r h   

12 12 8
01.06 10 Pa; 0.85 10 Pa; = =0.3; 10 / ; 1.13GPa/nm; 0; 1.13Pa.m; 0r r r w p pE E q E k k k k            

           

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 

Variation of dimensionless deflection versus the number 

of grid points for DQM and SAPM domain. 

 

Since there are not any papers in nonlinear bending of bilayer annular/circular graphene sheets, the local 

elasticity theory is considered and the central deflection of an single layer annular plate under uniform transverse 

load is compared with references [32-34] in Table 1. 

 
6= 0.3; / =10; 2 10 Pa; =0r r o rR r h E E             

 

 
Table 1 

Comparison dimensionless deflection     3 2 464 / 12 1 ow Eh W q r   with the other references for circular plate. 

w  

* q
q

E
  [32] [33] [34] Present Paper 

0.0001 0.1678 0.1687 0.1706 0.168 

0.0003 0.4583 0.4655 0.5119 0.4588 

0.001 1.0509 1.0937 1.7069 1.0514 

 

Also, the results are compared with references [35, 36] for an annular plate in Table 2. The material properties of 

the plate are as follows: = 0.288; = / =0.15; 280GPa; =0r r o rR r h E E        
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Table 2 

Comparison dimensionless deflection     3 2 464 / 12 1 ow Eh W q r   with the other references for annular plate. 

w  

[35] [36] Present study 

Clamped Simply Supported Clamped Simply Supported Clamped Simply Supported 

2.781 10.623 2.774 10.572 2.803 10.567 

 

In this paper, in addition to FSDT analysis, the governing equations are derived based on the classical plate 

theory (CLPT) considering nonlinear strain fields. Comparison between FSDT and CLPT analysis is shown in Table 

3. with clamped edges and the material properties as follows: 
12 12 8/ 0.2; 0.34nm; 1.06 10 Pa; 0.85 10 Pa; = =0.3; 10 / ; 1.13GPa/nm; 1.13Pa.mi o r r r w pr r h E E q E k k              

It is observed that the descending procedure of the deflection versus the increase of nonlocal parameter for CLPT 

analysis is similar to FSDT. On the other hand, with increase of nonlocal parameter the deflection decreases for both 

CLP and FSD theories. In addition, the difference between the results of two theories decreases with increase of 

small scale effects. 

 
Table 3 

Comparison between CLPT and FSDT analysis 

w 
 

FSDT/CLPT 
 0 nme a  FSDT CLPT 

0 0.003063          0.003380                 0.906 

0.5 0.002985          0.003289                 0.907 

1 0.002774          0.003044                 0.911 

1.5 0.002484          0.002713                 0.915 

2 0.002170          0.002359                 0.920  

 

Also, the comparison between the deflection of single layer and bilayer sheets is shown in Table 4. for SS 

boundary conditions. The deflection of the upper layer is given for the bilayer sheet. It is concluded that with rise of 

ok  the maximum deflection and the effect of nonlocal parameter decreases and also, the variation of the ratio 

Single layer/
okw w   increases. 

 

Table 4 

Comparison the results of single layer and bilayer sheets. 

w
 

 

2GPa/nm

Single layer

okw

w





 

 

50GPa/nm

Single layer

okw

w





  0 nme a  Single layer 

Bilayer 

ok = 2 (GPa/nm) ok = 50 (GPa/nm) 

0 0.0145 0.00974 0.00773 0.67 0.53 

1 0.0136 0.00900 0.00760 0.68 0.57 

  1.5 0.0125 0.00848 0.00745 0.69 0.60 

2 0.0115 0.00803 0.00728 0.70 0.63 

Sample 1: Bilayer annular plate 

A bilayer annular graphene sheet is considered. the variation of dimensionless deflection versus van der Waals 

interaction between the layers is shown in Fig. 5(a) for SS boundary conditions and (b) for CC (e0a=1nm). The van 

der Waals interaction between the layers is an obstacle for increase of the upper layer’s defection (Eq. (29), Fig. 

1(b)). Consequently, with rise of ok , the maximum deflection of the upper layer decreases. On the contrary, the 

deflection of bottom layer is increased. Totally, the two deflection of upper and bottom layer converges along the 

rise of van der Waals interaction. Comparing Figs. 5(a) and (b) it is concluded that the rate of convergence of 

deflections for SS boundary conditions is more than CC, because the plate is more flexible in SS boundary 



                                                                                                                               Sh. Dastjerdi and M. Jabbarzadeh                  656 

 

© 2016 IAU, Arak Branch 

conditions, so the effect of the van der Waals interaction in governing equations would be more significant on 

decreasing and increasing the both deflections of upper and bottom layers. 

 

 
(a) 

 
(b) 

Fig.5 

Variation of dimensionless deflection versus the van der Waals interaction between two layers (a) SS (b) CC boundary 

conditions 

 

The various types of boundary conditions are assumed at two edges ,i or r r . The maximum deflection of the 

upper layer due to nonlocal parameter variations is shown in Fig. 6. According to Fig. 6., The dimensionless 

deflection reduces with increase of nonlocal parameter. This concept shows that the flexibility of the nano plate 

decreases along the growing of nonlocal parameter. Furthermore, because of the more flexible boundary conditions 

and consequently the more effects of nonlocal parameter on the results, the curve slope for FC and FS boundary 

conditions are more than CC and SS.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6 

Variation of dimensionless deflection versus the nonlocal 

parameter for different types of boundary conditions. 

 

 

Fig. 7. illustrates the deflection ratio between the linear and nonlinear FSDT analysis [28], along the increase of 

nonlocal parameter for both simply supported and clamped boundary conditions. 

 

 Linear
s

Nonlinear

w
R

w
           

 

(44) 

 

As much as it was predictable, according to Fig. 7. the deflection in nonlinear FSDT is less than the linear 

analysis thru considering nonlinear strain terms and neglecting the effects of the rigidity deformations on the results. 

It is concluded that with increase of nonlocal parameter the linear and nonlinear analysis tends to each other. Also, it 

is observed that the curve slope for simply supported boundary conditions is more than clamped. 
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Fig.7 

Variation of sR  versus the nonlocal parameter for C-C 

and S-S boundary condition. 

 

 

The variation of mR  versus the dimensionless transverse loading is shown in Fig. 8. mR is defined as [28]: 
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(45) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8 

Variation of mR  versus the dimensionless transverse 

loading. 

 

mR  shows the nonlocal effects on the results. In Fig. 8 the variation of mR  parameter is investigated based on 

various uniform transverse loads for both simply supported and clamped boundary conditions. As it is observed, 

with growing of transverse load, the nonlocal theory recedes from the local theory for clamped boundary conditions 

(CC). Also, these variations are inappreciable for greater nonlocal parameters. However, the both local and nonlocal 

theories approach along the rise of loads for simply supported boundary condition (SS). Also, with increase of 

nonlocal parameter, the variation of mR  is increased. 

Sample 2: Bilayer circular plate 

A bilayer circular nano plate is considered with the identities as follows (Fig. 9): 

 
12 71.06 10 Pa; 4.5 10 / ; =0.0018868;  / 7.35  r w oE E q E k R r h

                    

 

The boundary conditions are as below: 

At the center: 0  ,  Simply Supported : 0  ,  Clamped : 0 r ru Q u w M u w                  
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Fig.9 

Bilayer Circular nano plate. 

 

 

The variation of mR  for upper and bottom layers is shown in Fig. 10 in presence (a) and absence of elastic 

foundation (b) versus the van der Waals interaction between the layers for clamped circle. 

As shown, increase of van der Waals interaction value causes decreasing the mR  parameter. The local and 

nonlocal analysis recedes from each other long the rise of ok  for upper layer in presence and absence of elastic 

foundation. However, the local and nonlocal results approach versus the increase of ok  in absence of elastic 

foundation (Fig. 10 (a)). When the elastic foundation exists, increasing the van der Waals interaction causes 

approaching the local and nonlocal results up to a specific value of ok . In continue, with increase of ok , the local 

and nonlocal results are receded. Also, it can be seen that the variation of mR  is more significant when the small 

scale effects are increased. 

 

 
(a)  

(b) 

Fig.10 

Variation of mR  versus the van der Waals interactions value for upper and bottom layers in absence (a), presence of elastic 

foundation (b). 

 

Finally, the effect of Winkler-Pasternak elastic foundation is studied for two types of boundary conditions 

clamped and simply supported edges in Fig. 11. The effect of Winkler elastic foundation is studied in Fig. 11(a). As 

shown, with increase of Winkler stiffness value up to 1 GPa/nm, the maximum deflection descends with a steep 

slope, then it tends to a constant value. In continue, there are not any considerable changes in deflection descending. 

It is observed that the deflections are receded with increase of the non-local parameter along the growing of Winkler 

elastic foundation up to a specific value near 1 GPa/nm. In continue, the deflections approach with rise of the 

Winkler stiffness and the effect of small scales decreases. The variation is extremely considerable for simply 

supported boundaries in comparison with clamped. It is observed that the results for two types of boundary 

conditions tend to each other with a gradual slope with increasing the Winkler stiffness more than 1 GPa/nm. 

Accordingly, it is concluded that the value of Winkler stiffness matrix has more effects on the decreasing of the 

deflection. As shown in Fig. 11(b), all the mentioned results for Winkler elastic foundation is correct for the 
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Pasternak. However, the descending procedure for deflection along the increase of Pasternak stiffness continues 

gently and the maximum deflections are not so close for two types of boundary conditions, as they are for the 

Winkler stiffness matrix. 

 

 
 

(a) (b) 

Fig.11 

Dimensionless deflection versus (a) Winkler stiffness foundation. (b) Pasternak stiffness foundation. 

6    CONCLUSIONS 

In this paper, the nonlinear bending analysis of bilayer annular/circular graphene sheets embedded in two parameters 

Winkler-Pasternak elastic matrix was investigated based on the nonlocal elasticity theory. The equilibrium equations 

were derived using the principals of minimum potential energy method. The driven ordinary differential equations 

were solved using the differential quadrature method (DQM) which is a highly accurate numerical method and a 

new semi-analytical polynomial method (SAPM). The effects of nonlocal parameter, van der Waals interaction 

between the layers, elastic foundation, transverse load and the boundary conditions were studied. The total 

conclusions can be categorized as follows: 

- The presented semi-analytical polynomial method (SAPM) is highly accurate, considerably simple in 

formulations and programming. Its rate of processing time is about fifty percent more than DQM. So, it can 

be used instead of the other popular numerical methods. 

- The deflection of the upper and bottom layers approach to each other with increase of the van der Waals 

interaction. 

- Increase of nonlocal parameter leads to decreasing the deflections for upper layer in all types of boundary 

conditions. Whatever the plate is more flexible in boundary conditions, the small scale effects on the results 

increases. 

- Increasing the nonlocal parameter has much more effects on nonlinear analysis in comparison with the 

linear analysis. 

- The effects of growing the nonlocal parameter on deflection increases when the plate is embedded in an 

elastic foundation. 

- If elastic foundation exists, the local and nonlocal theories will recede along the rise of loading. On 

contrary, two theories approach in absence of elastic foundation. 

- The Winkler stiffness value has the more effects on the deflection’s descending in comparison with the 

Pasternak elastic foundation. 
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