Vibration Analysis of FG Nanoplate Based on Third-Order Shear Deformation Theory (TSDT) and Nonlocal Elasticity
Subject Areas : EngineeringM.M Najafizadeh 1 , M Raki 2 , P Yousefi 3
1 - Department of Mechanical Engineering, Islamic Azad University, Arak Branch, Arak, Iran
2 - Department of Mechanical Engineering, Islamic Azad University, Arak Branch, Arak, Iran
3 - Department of Mechanical Engineering, Islamic Azad University, Arak Branch, Arak, Iran
Keywords:
Abstract :
[1] Hirano T., Yamada T., 1988, Multi paradigm expert system architecture based upon the inverse design concept, Proceedings of the International Workshop on Artificial Intelligence for Industrial Applications 1988: 245-250.
[2] Bao G., Wang L., 1995, Multiple cracking in functionally graded ceramic/metal coatings, International Journal of Solids and Structures 32(19): 2853-2871.
[3] Jin Z.-H., Paulino G. H., 2001, Transient thermal stress analysis of an edge crack in a functionally graded material, International Journal of Fracture 107(1): 73-98.
[4] Erdogan F., Chen Y. F., 1998, Interfacial cracking of FGM/metal bonds, Ceramic Coating 1998: 29-37.
[5] Delale F., Erdogan F., 1983, The crack problem for a nonhomogeneous plane, Journal of Applied Mechanics 50(3): 609-614.
[6] Aydogdu M., 2009, A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration, Physica E: Low-Dimensional Systems and Nanostructures 41(9): 1651-1655.
[7] Civalek Ö., Demir Ç., 2011, Bending analysis of microtubules using nonlocal Euler--Bernoulli beam theory, Applied Mathematical Modelling 35(5): 2053-2067.
[8] Reddy J.N., 2007, Nonlocal theories for bending, buckling and vibration of beams, International Journal of Engineering Science 45(2): 288-307.
[9] Reddy J. N., Pang S. D., 2008, Nonlocal continuum theories of beams for the analysis of carbon nanotubes, Journal of Applied Physics 103(2): 23511.
[10] Reddy J. N., 2010, Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates, International Journal of Engineering Science 48(11): 1507-1518.
[11] Roque C. M. C., Ferreira A. J. M., Reddy J. N., 2011, Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method, International Journal of Engineering Science 49(9): 976-984.
[12] Wang C. M., Kitipornchai S., Lim C. W., Eisenberger M., 2008, Beam bending solutions based on nonlocal Timoshenko beam theory, Journal of Engineering Mechanics 134(6): 475-481.
[13] Fu Y., Du H., Zhang S., 2003, Functionally graded TiN/TiNi shape memory alloy films, Materials Letters 57(20): 2995-2999.
[14] Lu C., Wu D., Chen W., 2011, Nonlinear responses of nanoscale FGM films including the effects of surface energies, Nanotechnology 10(6): 1321-1327.
[15] Shaat M., Mahmoud F. F., Alieldin S. S., Alshorbagy A. E., 2013, Finite element analysis of functionally graded nano-scale films, Finite Elements in Analysis and Design 74: 41-52.
[16] Wang W. L., Hu S. J., 2005, Modal response and frequency shift of the cantilever in a noncontact atomic force microscope, Applied Physics Letters 87(18): 183506.
[17] Shaat M., Abdelkefi A., 2016, Modeling of mechanical resonators used for nanocrystalline materials characterization and disease diagnosis of HIVs, Microsystem Technologies 22(2): 305-318.
[18] Salehipour H., Nahvi H., Shahidi A. R., 2015, Exact analytical solution for free vibration of functionally graded micro/nanoplates via three-dimensional nonlocal elasticity, Physica E: Low-Dimensional Systems and Nanostructures 66: 350-358.
[19] Nami M. R., Janghorban M., 2014, Resonance behavior of FG rectangular micro/nano plate based on nonlocal elasticity theory and strain gradient theory with one gradient constant, Composite Structures 111: 349-353.
[20] Salehipour H., Nahvi H., Shahidi A. R., 2015, Exact closed-form free vibration analysis for functionally graded micro/nano plates based on modified couple stress and three-dimensional elasticity theories, Composite Structures 124: 283-291.
[21] Salehipour H., Shahidi A. R., Nahvi H., 2015, Modified nonlocal elasticity theory for functionally graded materials, International Journal of Engineering Science 90: 44-57.
[22] Natarajan S., Chakraborty S., Thangavel M., Bordas S., Rabczuk T., 2012, Size-dependent free flexural vibration behavior of functionally graded nanoplates, Computational Materials Science 65: 74-80.
[23] Eringen A. C., 2002, Nonlocal Continuum Field Theories, Springer.
[24] Meirovitch L., 2001, Fundamentals of Vibrations, Mc Graw-Hill.
[25] Aghababaei R., Reddy J. N., 2009, Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates, Journal of Sound and Vibration 326(1-2): 277-289.
[26] Hosseini-Hashemi S., Kermajani M., Nazemnezhad R., 2015, An analytical study on the buckling and free vibration of rectangular nanoplates using nonlocal third-order shear deformation plate theory, European Journal of Mechanics - A/Solids 51: 29-43.
[27] Zare M., Nazemnezhad R., Hosseini-Hashemi S., 2015, Natural frequency analysis of functionally graded rectangular nanoplates with different boundary conditions via an analytical method, Meccanica 50(9): 2391-2408.