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 ABSTRACT 

 In present study, the third-order shear deformation theory has been developed 

to investigate vibration analysis of FG Nano-plates based on Eringen nonlocal 

elasticity theory. The materials distribution regarding to the thickness of Nano-

plate has been considered based on two different models of power function and 

exponential function. All equations governing on the vibration of FG Nano-

plate have been derived from Hamilton’s principle. It has been also obtained 

the analytical solution for natural frequencies and corresponding mode shapes 

of simply supported FG Nano-plates. In addition, the general form of stiffness 

and mass matrix elements has been expressed based on this theory. The effect 

of different parameters such as power and exponential indexes of targeted 

function , nonlocal parameter of Nano-plate, aspect ratio and thickness to 

length ratio of Nano-plate on non-dimensional natural frequencies of free 

vibration responses have been investigated. The obtained analytical results 

show an excellent agreement with other available solutions of previous studies. 

The formulation and analytical results obtained from proposed method can be 

used as a benchmark for further studies to develop this area of research. 

                                                    © 2018 IAU, Arak Branch.All rights reserved. 

 Keywords : Nano-plate; Functionally graded material (FGM); Nonlocal 
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1    INTRODUCTION 

 N recent years, the Nano-scale electromechanical systems (NEMS) such as high frequency Nano-actuators, 

Nano-sensors, Nano-super capacitors and Nano-semiconductor have been paid much attentions due to 

developments of engineering sciences. In the other sides, FG materials are a class of non-homogeneous materials 

obtained from a combination of the two materials to create a combination with specific functions. In FG materials, 

the possibility of delamination is decreased due to the stress concentration at the interface, with gradual change in 

volume fraction of compounds compere to their sudden change in multilayer composite materials [1]. Generally, 

Power law functions [2, 3] and exponential functions [4, 5] are used to describe the changes in properties of FG 

material. An important part of the studies have been conducted on the behavior of bending, vibration and buckling 

of one-dimensional nanostructures emphasized on nonlocal elasticity theory (Aydogdu [6], Civalk and Demir [7], 

Reddy [8, 10], Reddy and Pang [9], Roque et al [11] and Wang et al [12]), These nanostructures include Nano-

beams, Nano-rods and carbonic nanotubes. In recent years, the application of FG materials has been highly 

developed in Nano-scale devices and systems such as thin films [13, 14 and 15], atomic force microscopy [16] and 
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bio-mass sensor applications [17]. Salehipour et al have analytically investigated the free vibration FG Micro/Nano-

plates with different combination of plain bearings and fixed bearings and free boundary conditions using Eringen 

nonlocal elasticity theory [18]. Nami and Janghorban have conducted a study on resonance behavior of rectangular 

FG Nano-plates with plain bearing boundary condition [19]. They utilized from theories independent from nonlocal 

elasticity scale and strain gradient. Salehipour et al developed exact Solution of the free vibration to FG Nano-plates 

using three-dimensional theories of elasticity [20, 21]. Natarajan et al have also analyzed vibration behavior of FG 

Nano-plates using first-order shear deformation theory [22]. 

In present study, the third-order shear deformation theory has been developed to investigate vibration analysis of 

FG Nano-plates based on Eringen nonlocal elasticity theory. All equations governing on the vibration of FG Nano-

plate have been derived from Hamilton’s principle. It has been also obtained the analytical solution for natural 

frequencies and corresponding mode shapes of simply supported FG Nano-plates. Finally, the effect of different 

parameters such as power and exponential indexes of targeted function, nonlocal parameter of Nano-plate, aspect 

ratio and thickness to length ratio of Nano-plate on non-dimensional natural frequencies of free vibration responses 

have been investigated. 

2    MODELING AND DESCRIPTION OF RELATIONS GOVERNING ON THE PROBLEM 

2.1 A brief history of nonlocal elasticity theory  

The nonlocal elasticity theory was firstly introduced by Eringen to take into account the effect of small scale 

parameter in modeling continuum mechanics in non-classical problems [23]. In nonlocal theory despite of classical 

elasticity theory, the elasticity is modeled at a single point of continuous physical model which depends on the strain 

of all its parts. In the other words, strain in a single point depends on the elasticity and its partial derivatives in 

mentioned point. 

Eringen has expressed the differential equation of this theory in a way that Non-local elasticity tensor is signed 

with ij  and local elasticity tensor with ijt . 

 

 21 ij ijt     (1) 

2.2 The model of functionally graded material 

2.2.1 The model of exponential functionally graded material 

The amount and how a change in properties of the ceramic material on the z axis is shown with exponential index of 

FG material i.e.   parameter. Following exponential functions are used to describe the properties distribution in the 

materials: 
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(2) 

     

where, z is the thickness of the plate and ( )P z  indicate a general property of material such as Young's modulus. 

The coefficients 
cP  and 

mP  are high-level properties (full ceramic) and low-level properties (full metal) of the 

material, respectively. 

2.2.2 The model of exponential functionally graded material 

The amount of volume distribution fraction of ceramic material on the z axis is shown with power index of FG 

material i.e.   and is defined using following relation:  
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where 
cV  is the ceramic material parameter on its distribution profile. After defining volume distribution fraction for 

this material, it should be noted that the numerical parameters or power index of FG material is a positive number; in 

a way that if   equals to zero, then the beam is quite ceramic and the metallicity increased with its increasing 

toward infinity rate. Different properties of material vary along the thickness to form:  

 

  c c m mP z PV P V   (4) 

2.3 Equilibrium equations with third-order shear deformation theory (TSDT) and nonlocal elasticity 

Fig. 1 represents the geometric model of rectangular plate system with sides A and B and thickness h made up of FG 

materials. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 

Geometric model of system. 

2.3.1 The relations of third-order shear deformation theory 

According to the Reddy shear theory for thick plates, the deformation field in plate can be rewritten as follow: 
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In addition, the strain-displacement relations in third-order shear deformation theory are according to the 

following equations: 
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Therefore, Hooke's law can be written in the following form:  

 

 

 

 

 

2 2

2 2

1
0

1 1

1
0

1 1

1
0 0

2 1

1 0

0 12 1

xx xx

yy yy

xy xy

yz yz

xz xz

E z

E z



  


 
 

 



 

 

 
 
     

    
    

     
    

  

    
    

     

 

 

 

 

 

 

(8) 

 

The final strain-displacement relations for the palate can be written as following form: 
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The resultants elasticity in nonlocal theory for Nano-plate is: 
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which, the equations related to
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 have been represented in the appendix 

2.3.2 Equilibrium equations of the system 

The virtual work method and Hamilton's principle have been used to achieve motion equation of the system. 
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According to the Hamilton's principle, the equilibrium equations of system in nonlocal space can be expressed as 

following five forms: 
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In above relations we have:  
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In addition, the phrases related to the high order of FG Nano-plate have been used in the equilibrium equations 

of system are in following form: 
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3    THE ANALYTICAL SOLUTION OF EQUATION 

3.1 The boundary conditions governing on the problem 

According to the model, the boundary conditions system of the plate has been considered in the form of four sides 

simply supported. The geometrical and mechanical conditions at the borders of the plate can be shown using 

following relations: 
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Therefore, following series which satisfy above conditions are considered as linear motion and angular functions 

of the plate. 
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where,
n π m π

 β ,  α
b a

   and 
mn mn mn mn mn

U  ,V  ,W  ,X  ,  Y  are unknown parameters. 

3.2 Analyzing free vibrations of the system 

To analyze of system free vibration frequencies, it has been assumed that the time response is in harmonic form and 

it is possible to consider the time displacement vector  
T

mn mn mn mn mn
U  ,V  ,W  ,X  ,  Y   in the form of 

0

i te     . 

The matrix form of vibration`s equation of the system is as follow: 

 

    2 0K M    (21) 

 

 k and  m  are thickness and mass matrixes of the system, respectively are in square form with five rows and 

columns based on the third-order shear deformation theory. The frequency of free vibrations of the system has been 

signed with  which is based on radians per second. The determinant of the coefficient`s matrix should be zero to 
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achieve unique solutions form the system and the natural frequencies are the roots of the characteristic equation of 

system. 

4    NUMERICAL RESULTS AND DISCUSSION OF THEM 

4.1 Validation 

To validate this analytical solution, its results have been comprised with previous studies. Since, no study have been 

yet conducted on the free vibration of thick FG Nano-plate (with power or exponential) based on the third-order 

shear deformation theory (TSDT) and nonlocal elasticity, so the results obtained from this analysis have been 

comprised from following references, respectively. 

The studies of Aghababaei and Reddy [25] and Hosseini-Hashemi et al [26] on investigation of free vibration of 

thick homogeneous Nano-plate using third-order shear deformation theory and nonlocal elasticity. 

The study of Natarajan et al [22] and Zare et al [27] on investigation of free vibration of thin FG Nano-plate 

(with power function) using classical theory of plates and nonlocal elasticity. 

The study of Salehipour et al [21] on investigation of free vibration of FG Nano-plate (with exponential 

function) using nonlocal elasticity theory, first order shear deformation theory and three-dimensional elasticity 

theory. 

4.1.1 Comprising the results with references [25] and [26] 

The following results were obtained for homogeneous Nano-plate with properties of 300 , 10E GPa a nm   and 

dimensionless frequency in the form of 2 h
a

D






  . 

 

The ratio of nonlocal frequency to local frequency (a number between zero and one) in different modes and for 

different dimensionless nonlocal parameters of nl
a


   has been expressed in Table 1. 

Table 1 

Comparison between nonlocal frequencies ratio for square FG plate with dimensionless parameters according to reference [26]. 

ModeNum Refs nl=0 nl=0.2 nl=0.4 nl=0.6 

(1,1) 
 [26] 

1 
0.7475 0.4904 0.3512 

Present Study 0.7475 0.4904 0.3512 

(1,2) 
 [26] 

1 
0.5799 0.3553 0.2308 

Present Study 0.5799 0.3353 0.2308 

(1,3) 
 [26] 

1 
0.4497 0.244   0.1655 

Present Study 0.4496 0.244   0.1655 

 

Table 2. represents a comparison among dimensionless fundamental frequencies for a homogeneous rectangular 

FG Nano-plate with 0.5a b   for different dimensionless parameters as well as different ratios of height to length 

of Nano-plate in different references.     
 

Table 2 

Comparison among dimensionless fundamental frequencies for FG Nano-plate with dimensionless parameters by Refs [25] and 

[26]. 

h a 2( )nm  Refs  

0.1 

0 

[25] 12.1157   

[26] 12.0675   

Present Study 12.0675   

1 

[25] 11.4187   

[26] 11.3856   

Present Study 11.3856   

4 

[25] 9.9016 

[26] 9.8745 

Present Study 9.8746 
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4.1.2 Comprising the results with references [22] and [27] 

In this reference, the dimensionless frequency of  FG plates was obtained based on the classical theory and the 

theory of nonlocal which its relation is in the form of 
2

c

c

h
G


  . The comparison was carried out on a Nano-

plate with following properties. Other geometrical and mechanical parameters have been presented as follow: 

 

348.43 , 201.04 , , 2370, 8166, 0.3, 10
2(1 )

c

c m c c m

E
E GPa E GPa G v a nm

v
       


 

 

                                        

Firstly, Table 3. was provided to comprise dimensionless frequencies in different dimensional ratios of FG 

Nano-plate as well as its different nonlocal parameters by fixing exponential index of FG material, its thickness to 

length ratio equal to 0.05 and power index parameter equal to 5. 

 
Table 3 

Comparison between first three peak dimensionless fundamental frequencies for FG plate with dimensionless parameters 

according to reference [22] and [27]. 

a b Nonlocal Refs mode1 mode2 mode3 

1 

0 

[22] 0.0113   0.0278   0.0279   

[27] 0.0114   0.0281   0.0281   

Present Study 0.01133 0.02794 0.02794 

2 

[22] 0.0085   0.0161   0.0162   

[27] 0.0085   0.0165   0.0165   

Present Study 0.00847 0.0162   0.0162   

2 

0 

[22] 0.0279   0.044     0.0701   

[27] 0.0281   0.0443   0.0704   

Present Study 0.02794 0.0441   0.07014 

2 

[22] 0.0162   0.0216   0.0283   

[27] 0.0165   0.0218   0.0286   

Present Study 0.0162   0.02163 0.02833 

 

The dimensionless frequencies were also in good agreement for another FG Nano-plate with following 

properties: 

 

380 , 70 , 2702, 3800, 0.3
c m c m

E GPa E GPa v        

By fixing all dimensions of Nano-plate, the dimensionless frequency changes of 
2

1

c

c

a

h E


  ;  were comprised 

with nonlocal parameter, as well as power index of FG material for two theories in different modes, which its results 

have been represented in Table 4. 

 
Table 4  

Comparison between dimensionless fundamental frequencies for FG plate with dimensionless parameters according to reference 

[27]. 

Nonlocal   Theory (1,1) (1,2) (2,2) (1,3) 

0 

0.1 
CPT [27] 5.81138 14.3717     22.8824 28.5292 

TSDT 5.52018 13.6247     21.5513 26.6988 

1 
CPT [27] 4.62678 11.4209     18.1769 22.6604 

TSDT 3.81261 9.41587 14.8886 18.4687 

10 
CPT [27] 3.87362 9.53273 15.1478 18.8672 

TSDT 2.76058 6.78287 10.6742 13.2012 

0.1 

0.1 
CPT [27] 5.32051 11.8058     17.2163 20.4084 

TSDT 5.04469 11.1488     16.0952 18.9407 

1 
CPT [27] 4.23696 9.38116 13.6704 16.1995 

TSDT 3.48421 7.70479 11.1296 13.1021 

10 
CPT [27] 3.54899 7.83929 11.4151 13.5229 

TSDT 2.52281 5.55027    7.97921     9.36521 
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4.1.3 Comprising the results with reference [21] 

For an exponential FG material, the results of this frequency analysis were also comprised with three-dimensional 

theory of the plates, as well as with first order of shear deformation in two-dimensional theory of plates. Table 5. 

represents the dimensionless fundamental frequencies of  FG Nano-plate's free vibration in the two primary modes. 

 
Table 5  

Comparison between dimensionless fundamental frequencies for FG plate with various power indexes and height to length ratio 

parameters by reference [21]. 

Nonlocal Exp. Index a h Method First Second 

0 

2 

5 

3D 5.2476 13.777 

FSDT 5.2306 13.777 

TSDT 5.2283 13.777 

10 

3D 5.7108 27.554 

FSDT 5.7054 27.554 

TSDT 5.7043 27.554 

3 

5 

3D 5.1654 13.777 

FSDT 5.1575 13.777 

TSDT 5.1504 13.777 

10 

3D 5.6142 27.554 

FSDT 5.6115 27.554 

TSDT 5.6089 27.554 

0.3 

2 

5 

3D 4.6081 12.388 

FSDT 4.7032 12.388 

TSDT 4.7011 12.388 

10 

3D 5.4922 26.772 

FSDT 5.5436 26.772 

TSDT 5.5426 26.772 

3 

5 

3D 4.5313 12.388 

FSDT 4.6374 12.388 

TSDT 4.6311 12.388 

10 

3D 5.3885 26.772 

FSDT 5.4524 26.772 

TSDT 5.4499 26.772 

 

In general, the correctness and accuracy of present study was validated and confirmed through analyzing and 

comprising its results with above mentioned references. 

4.2 Parametric study of the results 

In this section, the effect of fundamental and variable parameters of present study on the vibration`s frequency has 

been investigated. 

4.2.1 The effect of FG material index and nonlocal parameter 

In Fig. 2 by linear increasing of power index value of FG material in an unique nonlinear parameter, the 

dimensionless frequency of Nano-plate's vibrations is decreased in a nonlinear form (it has trended from 

dimensionless frequency of pure ceramic material toward dimensionless frequency of pure metal material); in a way 

whatever the power index of FG material is greater, the curve slope of changes is more decreased and the sensitivity 

of frequency to index changes is reduced. 

In a fixed power index, whatever the value of nonlocal parameter is lower, the dimensionless frequency of base 

mode vibration is lower. Therefore, the blue curve which indicates the mode of local classical theory always 

estimates the Nano-plate frequency higher than its actual value. This reduction in frequency is more significant 

when the value of index is lower than 2. 
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Fig.2 

Frequency curves for FG Nano-plate with various power 

index and nonlocal parameters. 

 

In Fig. 3 according to the horizontal axis which represents the dimensionless parameter value of exponential 

index, two modes can be considered to the unique nonlocal parameter: in the first mode if the dimensionless index 

be between zero and one, then by increasing the value from very small amounts, the frequency trends toward a 

maximum value with a very sharp slope and in a nonlinear form while the exponential index is equal to one. The 

maximum value varies for any different nonlocal parameters of Nano-plate, but all of them occur in horizontal 

coordinate of 1. In the second mode for index values of higher than 1, the frequency of base mode is reduced with a 

slight slope by an increase in the exponential index. Similar to the power mode, nonlocal parameter increasing leads 

to a nonlinear decrease in dimensionless frequency. 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Frequency curves for FG Nano-plate with various exponential 

index and nonlocal parameters. 

 

5    CONCLUSIONS 

In present study, the third-order shear deformation theory has been developed to investigate vibration analysis of FG 

Nano-plates based on Eringen nonlocal elasticity theory. The materials distribution regarding to the thickness of 

Nano-plate has been considered based on two different models of power function and exponential function. All 

equations governing on the vibration of FG Nano-plate have been derived from Hamilton’s principle. It has been 

also obtained the analytical solution for natural frequencies and corresponding mode shapes of simply supported FG 

Nano-plates. In addition, the general form of stiffness and mass matrixes' elements has been expressed based on this 

theory. In addition, the general form of mass matrix elements and thickness of FG Nano-plate have been expressed 

according to this theory. 

The effect of different parameters including power and exponential indexes of FG, nonlocal parameter of Nano-

plate, dimensional ratio and thickness to length ratio of Nano-plate on the dimensionless frequency of free vibrations 

were investigated. 

The results showed that an increase in nonlocal parameter, as well as increase in power or exponential indexes of 

FG Nano-plate leads to a decrease in structure stiffness of Nano-plate-based system which is detectable through 

reduction in the frequency of system's oscillations. 

APPENDIX 

The relations related to the elasticity resultants can be written in following form: 
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(22) 

 

The strains-based elasticity resultants are obtained by replacing related equations: 
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(23) 

 

where, the high order tensile and flexural stiffness matrixes of FG plate in third-order shear deformation theory are 

defined in following forms: 

 

    
h /2

2 3 4 6

ij ij ij ij ij ij ij

h /2

A ,B ,D , E , F ,H Q z 1,z,z ,z ,z ,z  dz   ,   i, j 1,2,6.  


   
 

(24) 
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