Analysis of Axisymmetric Extrusion Process through Dies of any Shape with General Shear Boundaries
Subject Areas : Engineering
1 - Mechanical Engineering Department, Razi University
2 - Faculty of Mechanical Engineering , Shahid Rajaee Training University
Keywords:
Abstract :
[1] Avitzur B., 1963, Analysis of wire drawing and extrusion through conical dies of small cone angle, Transactions of the ASME, Journal of Engineering for Industry 85: 89-96.
[2] Avitzur B., 1964, Analysis of wire drawing and extrusion through conical dies of large cone angle, Transactions of the ASME, Journal of Engineering for Industry 86: 305-314.
[3] Avitzur B., 1966, Flow characteristics through conical converging dies, Transactions of the ASME, Journal of Engineering for Industry 88: 410-420.
[4] Avitzur B., 1967, Strain-hardening and strain-rate effects in plastic flow through conical converging dies, Transactions of the ASME, Journal of Engineering for Industry 89: 556-562.
[5] Zimerman Z., Avitzur B., 1970, Metal flow through conical converging dies-a lower upper bound approach using generalized boundaries of the plastic zone, Transactions of the ASME, Journal of Engineering for Industry 92: 119-129.
[6] Chen C. T., Ling F. F., 1968, Upper bound solutions to axisymmetric extrusion problems, International Journal of Mechanical Sciences 10: 863-879.
[7] Nagpal V., 1974, General kinematically admissible velocity fields for some axisymmetric metal forming problems, Transactions of the ASME, Journal of Engineering for Industry 96: 1197-1201.
[8] Yang DY D.Y., Han CH C.H., Lee B.C., 1985, The use of generalised deformation boundaries for the analysis of axisymmetric extrusion through curved dies, International Journal of Mechanical Sciences 27: 653-663.
[9] Osakada K., Niimi Y., 1975, A study on radial flow field for extrusion through conical dies, International Journal of Mechanical Sciences 17: 241-254.
[10] Yang D. Y., Han C. H., 1987, A new formulation of generalized velocity field for axisymmetric forward extrusion through arbitrarily curved dies, Transactions of the ASME, Journal of Engineering for Industry 109: 161-168.
[11] Peng D. S., 1990, An upper bound analysis of the geometric shape of the deformation zone in rod extrusion, Journal of Materials Processing Technology 21: 303-311.
[12] Gordon W. A., Van Tyne C. J., Sriram S., 2002, Extrusion through spherical dies—an upper bound analysis, Transactions of the ASME,Journal of Manufacturing Science and Engineering 124: 92-97.
[13] Gordon W. A., Van Tyne C. J., Moon Y. H., 2007, Axisymmetric extrusion through adaptable dies—Part 1: Flexible velocity fields and power terms, International Journal of Mechanical Sciences 49: 86-95.
[14] Gordon W. A., Van Tyne C. J., Moon Y. H., 2007, Axisymmetric extrusion through adaptable dies—Part 2: Comparison of velocity fields, International Journal of Mechanical Sciences 49: 96-103.
[15] Gordon W. A., Van Tyne C. J., Moon Y. H., 2007, Axisymmetric extrusion through adaptable dies—Part 3: Minimum pressure streamlined die shapes, International Journal of Mechanical Sciences 49: 104-115.
[16] Avitzur B., 1968, Metal Forming: Processes and Analysis, New York, NY: McGraw-Hill.