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 ABSTRACT 

 In this paper, a generalized expression for the flow field in axisymmetric extrusion process 

is suggested to be valid for any dies and the boundary shapes of the plastic deformation 

zone. The general power terms are derived and the extrusion force is calculated by 

applying upper bound technique for a streamlined die shape and exponential functions for 

shear boundaries. It is shown that assuming exponential boundaries for deformation zone 

yields a die shape with smaller extrusion force than that of by assuming spherical shape 

boundaries is in agreement with the results obtained by the finite element method. 

 © 2015 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 XISYMMETRIC extrusion, round to round, is a plastic deformation process in which a round billet is 

forced to flow by compression through the die opening of a smaller cross-sectional area than that of the original 

billet. The pressure required for axisymmetric extrusion is a function of the process parameters (reduction, friction 

factor, and die shape). For a particular extrusion process, the size of billet, the reduction and the friction factor are 

constant. The main factor affecting on extrusion process is the die shape. Therefore, the determination of the specific 

die shape, which meets the minimum extrusion pressure, is important. 

Among various approximate methods of solution, upper bound solutions are found by minimizing the total 

power formulated from a chosen kinematically admissible velocity field. The assumption of velocity field will 

influence the prediction of extrusion pressure, metal flow and optimized die shape. There is no method available in 

the literature for constructing kinematically admissible velocity fields appropriate for the problem under 

consideration. It is always desirable to utilize a velocity field, which is as close to reality as possible. Even though 

the velocity field may not exactly match the flow behavior of the material, if it is chosen carefully, valuable insight 

about the process can be obtained. It is often necessary to include extra variables or parameters in the velocity field 

in order to produce a realistic description of the actual flow. The best value for a variable is the one, which requires 

the minimum amount of externally supplied power for the process to occur. 

Considerable attention has been focused on the upper bound analysis of axisymmetric extrusion through variety 

of die shapes by assuming appropriate velocity fields. Avitzur [1–4] examined axisymmetric extrusion through 

conical dies using upper bound model. The boundaries at the entrance and the exit of the deformation zone, which 

are also shear surfaces or velocity discontinuity surfaces, have been assumed by Avitzur as two concentric spherical 

surfaces with their centre at the virtual apex of the cone of the die. Zimerman and Avitzur [5] modeled extrusion 
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process through conical die using the upper bound method, but with generalized shear boundaries. Chen and Ling 

[6] developed a velocity field for axisymmetric extrusion through cosine, elliptic and hyperbolic dies. Nagpal [7] 

proposed a generalized velocity field in which the deformation region could be optimized. Yang et al. [8] and Yang 

and Han [9] developed upper bound models with streamlined dies. Osakada and Niimi suggested a generalized 

expression for the radial flow field for extrusion through a conical die [10]. The shear boundaries have been 

assumed as two similar curved surfaces. In the study of Peng [11] for extrusion through a conical die, the boundary 

at the exit of the deformation zone assumed to be a spherical surface with its centre at the apex of cone of the die, 

and the boundary at the entrance was assumed to be an arbitrarily curved surface. Gordon et al. were analysed 

extrusion process through spherical dies by upper bound method assuming spherical surfaces for shear boundaries 

[12]. They were also developed the adaptable die design method for axisymmetric extrusion. The fixed velocity 

fields were modified by an additional term comprised to two functions. One function allows extra flexibility in the 

radial direction, and the second function allows extra flexibility in the angular direction. These flexible velocity 

fields were used in upper bound models for extrusion through dies of any shape. The proposed method by Gordon et 

al. was described in details in a series of papers [13-15]. 

As mentioned above, most of research works were focused on the conical die shapes with assuming general 

shear boundaries or non-conical die shapes with assuming spherical surfaces for shear boundaries. The flow field 

with spherical boundaries has been used because of simplicity. However, it is known that a field with spherical 

boundaries gives a higher upper bound value of the extrusion pressure than some other fields for large die angles in 

conical dies.  

In this paper, a generalized expression for the velocity field in axisymmetric extrusion process is suggested that 

is valid for different dies and the shear boundary shapes of the deformation zone. The boundaries of the deformation 

zone are assumed to be exponential surfaces and an upper bound solution for extrusion pressure for a rigid-perfectly 

plastic material is given. The equations are numerically integrated and the solution is optimized by successive 

approximations with respect to the shape of the zone of plastic deformation to obtain the lowest upper bound value 

of the extrusion force. After the upper bound model has determined the optimal shapes, a finite element code is used 

to study the extrusion through dies with these optimal shapes. The upper bound extrusion force is compared with the 

computational result produced by the finite element method.  

2    UPPER BOUND ANALYSIS    

Based on the upper bound theory, for a rigid-plastic Von-Misses material and amongst all the kinematically 

admissible velocity fields, the actual one that minimizes the power required for material deformation is expressed as: 

 

* 02 1

23
ij ij i i

V S S Sv f t

J dV k v dS m k v dS T v dS


                     
 

   (1) 

 

where
 0  is flow stress of the material, k the material yield strength in shear, ij the strain rate tensor, m the 

constant friction factor, V the volume of plastic deformation zone, vS and fS the area of velocity discontinuity and 

frictional surfaces respectively, tS the area where the tractions may occur, v the amount of velocity discontinuity 

on the frictional and discontinuity surfaces and
 iv and

 iT are the velocity and tractions applied on tS , respectively. 

2.1 Geometric description of the deformation zones 

Schematic diagram of the axisymmetric extrusion process through an arbitrarily curved die is shown in Fig. 1. In 

this figure, circular rod with initial radius oR is extruded through the curved die and its radius is reduced to fR . A 

spherical coordinate system ( , , )r   is used to describe the velocity in the deformation zones, the die surface and 

the positions of the two surfaces of velocity discontinuity or shear surfaces. The origin of the spherical coordinate 

system ( , , )r   is located at the intersection of the die axis of symmetry with a line at angle that goes through the 

point of die entrance and the exit point of the die. Fig. 1 shows the position of the coordinate system origin. The die 

surface, which is labeled ( )  in Fig. 1, is given in the spherical coordinate system. ( )  is the angular position of 
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the die surface as a function of the radial distance from the origin. The die length is given by the parameter L. The 

shear boundaries at inlet and outlet of the deformation zone, 1S and 2S  in Fig. 1, are assumed to be similar 

arbitrarily ( )or  and ( )fr  are geometrically similar, and they are written as a function of angle  as: 

 

( ) ( , )o o or g                  (2a) 

 

( ) ( , )f f or g                  (2b) 

 

and along die surface, it is assumed that
 

 

( ) ( , )r g                  (2c) 

 

where , o   and f are defined in Fig. 1. The function ( )g  takes a value of unity at   . For 

simplicity ( , ), ( , ), ( ), ( )og g r r      and ( )fr  will be abbreviated to , , ,o og g r r  and fr , respectively. When the 

function g is equal to 1 the shear boundaries are spherical surfaces and it has no variable parameter and the extrusion 

pressure is determined uniquely. 

 

 

 

 

 

 

 

 

 

Fig. 1 

Schematic diagram of the extrusion process through a 

curved die, geometric parameters and its deformation 

zones. 

2.2 Velocity fields in different zones 

The first step in modelling and analysing a metal forming process by use of upper bound approach is to select a 

suitable velocity field for the material which is deforming plastically.  

In zone I, material does not deform but moves as a rigid body in the axial direction with constant velocity of the 

punch ov and we have 

 

cos , sin , 0r o oU v θ U v U                   (3) 

 

In zone III, the material is already deformed and undergoes no further deformation, moving as a rigid body in the 

axial direction and the velocity field in spherical coordinate system ( , , )r   is 

 

 cos , sin , 0r f fU v θ U v U                  (4) 

 

where fv is the speed of the extruded rod and from the volume flow balance, we have 

 
2

2

o
f o

f

R
v v

R
       

 

   (5) 

 

Zone II is the deformation region and it is bounded by the surface of the die 3S , the boundary 1S at the inlet and 

the boundary 2S at the outlet, as shown in Fig. 1. 
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The condition of continuity of flow across the inlet boundary 1S as illustrated in Fig. 2, leads to 

 

1
tan o

o

g

g








      

 

   (6) 

 

where  is the angle between direction of the tangent to shear boundary with circumferential direction and angle  is 

the angular position of a point on surface 1S . 

 

 

 

 

 

 

 

 

Fig. 2 

Velocities at shear surface 1S . 

 

 

The radial velocity
 

( )roU  at the inlet boundary
 1S  is 

 

 
1

( ) (cos sin )o
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o

g
U v

g
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
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   (7) 

 

In Fig. 1, the volume flow of the material across the surfaces 1S at the point ( , , )or   in the radial direction is 

 

1
(cos sin )( )( sin )o

o o o
o

g
dQ v r d r d

g
    




 


     

 

   (8) 

 

The volume flow of the material in the radial direction at the point ( , , )r   in the deformation zone is 

 

( )( sin )rdQ U rd r d        (9) 

 

Assuming volume flow balance, the radial velocity
 rU within the deformation zone can be obtained. Equating 

Eqs. (8) and (9), the radial velocity component in zone II is found to be 

 

2 sin 1
( ) (cos sin )
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r o
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r g
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 
 
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 
  
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(10) 

 

where ov is the axial speed of the rod in the entrance of the die. 

Assuming proportional distances from die axis of symmetry [13], the relationship between the angular 

position  on
 1S and the angular position   in deformation zone II is derived by 

 

sin sin

sin sin

o o

o

g g   

   
  

    

(11) 

 

where angle
 


 
is the angular position of a point on the die profile at radial position  . The equation above is 

simplified as: 
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sin sin

sin sin

og g 

 
  

    

(12) 

 

Differentiating Eq. (12) yields 

 

sin
( os sin ) ( os sin )
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(13) 

 

Substituting Eq. (2a) and Eqs. (11)-(13) into Eq. (10), the radial velocity component is simplified as: 

 

2 2 2sin 1
( ) ( ) (cos sin )

sin

o
r o

g
U v g

r g

 
 

 


  


 

    

(14) 

 

The full velocity field for the flow of the material in deformation zone II is obtained by invoking volume 

constancy. Volume constancy in spherical coordinates is defined as: 

 

0rr        (15) 

 

where ii is the normal strain rate component in the i -direction. The strain rates in spherical coordinates are defined 

as: 
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(16) 

 

where ij (with i j ) is a shear strain rate component. With the assumption of no rotational motion in the 

deformation zone (i.e. 0U  ), a full velocity field is obtained by replacing rU , Eq. (14), into Eq. (16) via Eq. (15) 

and solving for
 
U , the angular component of velocity field, then we have 

 
2

2 2sin 1 1
( ) (cos sin )sin
sin sin

o
o

g
U v g

r r g

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  

 
  

 
 

 

(17) 

 

So the total velocity field in deformation zone II is described by 
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(18) 

                                      

To satisfy boundary condition on die surface; following constraint is applied on function g as: 

 

g g
at  

 

 
  

 
 

 

(19) 

 

The Eq. (18) gives the generalized expression for the flow field which includes all the possible die shapes and 

also boundary shapes of the zone of plastic deformation. A number of velocity fields of flow through conical and 

curved dies are special cases of the present velocity field. When shear boundaries are assumed as spherical surfaces 

(i.e.
 

1g  ), Eq. (18) each reduce to the velocity field proposed by Gordon et al. [12] for flow through an arbitrarily 

curved die. When the die shape reduces to a conical die and shear boundaries are assumed as spherical surfaces (i.e. 

( ) , 1r g   ), Eq. (18) each reduce to the spherical velocity field proposed by Avitzur for flow through a 

conical die [16].With the velocity field, the strain rates in the deformation zone can be given in usual matter. 

Appendix A gives the six relationships to determine the strain rates components. With the strain rate field and the 

velocity field, the standard upper bound method can be implemented. This upper bound method involves calculating 

the internal power of deformation over the deformation zone volume, calculating the shear power losses over the 

shear surfaces, and the frictional power loss between the material and the die. 

2.3 Internal power of deformation 

The internal power of deformation is given by  

 

0

2 1

23
i ij ij

V
W dV     

 

(20) 

 

where
 0  is the mean flow stress of the material and dV is a differential volume in the deformation zone. Internal 

powers of zones I, III are zero and the general equation to calculate the internal power of deformation in zone II is 

calculated as: 
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(21) 

 

where 0  is flow stress of material. 

2.4 Shear power dissipation 

In upper bound method (which includes surfaces of velocity discontinuity), the integration of the shear strength of 

the material times the tangential velocity difference along the specified surface yields a finite quantity of power. The 

power loss along a shear surface of velocity discontinuity is given by 

 

0

3
v

S
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W v dS
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(22) 
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Velocities at inlet boundary are shown in Fig. 2. The magnitude of the velocity discontinuity across shear 

surface 1S can be written as: 

 

1 sin cos sin( )r ov U U v         (23) 

 

where 
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An element of the surface area is  
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(25) 

 

For velocity discontinuity surface
 2S

 
 

2 sin cos sin( )       r fv U U v  (26) 

 

with 
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(27) 

 

Inserting Eqs. (23)-(25) and Eqs. (26)-(27) into Eq. (22), the power dissipated on the velocity discontinuity 

surfaces 1S and 2S are determined as: 
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2.5 Frictional power dissipation                                                                                                                                                                                  

The general equation for the frictional power loss along a surface with a constant friction factor m is 

 

0

3
f

f

S

W m v dS


   
 

(30) 

 

For frictional surface 3S : 

 

3 cos sinrv U U  
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
        (31) 
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where 
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    (32) 

 

And 

 

2
3 2 ( sin ) 1 ( )dS dr


   
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
 


 

    

    (33) 

Inserting Eqs. (31)-(33) into Eq. (30), gives the frictional power losses along the surface of the die as: 
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    (34) 

 

where m is the constant friction factor between the material and the die.  

The effect of friction in the container is neglected in this study. Therefore, the frictional power loss along the 

container surface is vanished. 

2.6 Total power  

Based on the upper bound model, the total power needed for axisymmetric extrusion can be obtained by summing 

up the internal powers and the powers dissipated on all frictional and velocity discontinuity surfaces as: 

 

1 2i S S fJ W W W W          (35) 

 

The externally supplied power, J  , for axisymmetric extrusion is 

 
2

ave o oJ P R v       (36) 

 

Therefore, the total upper bound solution for relative extrusion pressure is given by 

 

1 2

2
0 0

ave i S S f

o o

P W W W W

R v  
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  

    

    (37) 

 

The relative average pressure required for axisymmetric extrusion becomes a function of the process parameters 

(radii of initial billet and final product, friction factor and die shape) and the parameter associated with the velocity 

field. Eq. (37) is solved by using a numerical integration method. The solution is optimized by successive 

approximations with respect to the shape of the zone of plastic deformation. Thus, the lowest upper bound value of 

the relative extrusion pressure and the die shape with minimum pressure is obtained among its family of boundary 

shapes. 

3    RESULTS AND DISCUSSION     

In the theory developed above, different arbitrary boundary function for the plastic deformation zone and dies of 

different shapes can be employed if the die profile and boundary functions are expressed as equations ( )r and 
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( , )g   , respectively. The die shape of Yang and Han [10] is examined in the present investigation. They created a 

streamlined die shape as a fourth-order polynomial whose slope is parallel to the axis at both entrance and exit. 

Velocity discontinuities do not exist on the inlet and outlet shear boundaries in yang and Han die shape. Therefore, 

the power of shear deformation consumed on these boundaries vanishes. The equation describing the die shape of 

Yang and Han in spherical coordinate system ( , , )r   was expressed by Ref. [15] as: 
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with 
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    (39) 

 

where
 fL L is the position of the inflection point for the die and can vary from 0 to 1and  L denotes die length. 

In computation, both shear boundaries of 1S and
 2S are assumed to be portions of similar exponential surfaces 

whose axes are perpendicular to the axis of the die and pass through the origin O. Surfaces 1S and
 2S are represented 

mathematically by equations 
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    (40) 
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
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
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    (41) 

 

Quantity "c" is a geometric parameter of the shape of the boundary at the inlet and outlet of the deformation zone 

and can assume negative, zero or positive values. When "c" is negative, the boundaries move away from the origin 

O, when "c" is positive the boundaries move towards the origin O, when "c" is equal to zero, the boundaries are 

spherical surfaces and in this case, Eq. (37) has no variable parameter and the extrusion pressure is determined 

uniquely.Generalized form of the function ( , )g   and the first derivatives are 

 

sin
( , ) exp[ sin ( 1)]

sin
g c


  


   

    

    (42) 

 

sin sin sin
cos , cos

sin sin sin

g g
c g c g

  
 

    

 
  

 
 

    

    (43) 

 

It can be seen that 
g g

 

 
 

 
at die surface for  . 

The two combinations of friction factors, initial and final radii of billet are adopted during the analytical solution 

and the FEM simulation as:  

(A) m =0.2, oR =20 mm and fR =15 mm 

(B) m =0.5, oR =20 mm and fR =15 mm 

The relative extrusion pressure as a function of "c" for Case A and die length 20 mm is plotted in Fig. 3. The 

value of "c" at which the relative extrusion pressure is a minimum, represents the assumed boundaries of the plastic 

zone during actual flow. 
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Die length has a great influence on the extrusion force. In Fig. 4, comparison between the theoretical extrusion 

force values versus die length for Cases A and B assuming exponential, Eqs. (40) and (41), and spherical shear 

boundaries is shown. The calculations have been carried out for a perfectly plastic material with flow stress 200 

MPa. It is observed that, for each case there is an optimal die length, which minimizes the extrusion force. It is seen 

that assuming exponential boundaries for deformation zone yields a better upper bound value of the extrusion force 

compared to the extrusion force in case of spherical shape boundaries, which is in agreement with the results 

obtained by the finite element method. This figure also shows that an increase in the friction factor tends to increase 

the extrusion force.  
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Fig. 3 

Variation of relative extrusion pressure with "c" for case A 

and die length 20 mm.  

 

  

 

 

 

 

 

 

 

 

 

 

Fig. 4 

Comparison between the theoretical extrusion force values 

versus die length assuming spherical and exponential 

functions for shear boundaries. 

 

 
Force in case of spherical shape boundaries is in agreement with the results obtained by the finite element 

method. This figure also shows that an increase in the friction factor tends to increase the extrusion force.  

Optimal die geometries assuming exponential functions for shear boundaries for Cases A and B are shown in 

Fig. 5. It is seen that the optimal die length becomes shorter with increasing friction factor. 

For each optimal die shape, an FEM analysis using ABAQUS is performed to provide results for comparison 

with the upper bound results. Considering the symmetry in geometry, two-dimensional axisymmetric models are 

used for FEM analyses. The type of the element used in the model is CAX4R. Punch and container undergo elastic 

strains only. Thus, it is not necessary to use a fine mesh in these two pieces. However, sufficiently fine meshing is 

essential deformed material which undergoes plastic deformation. The container is fixed by applying displacement 

constraint on its nodes while the punch model is loaded by specifying displacement in the axial direction. Fig.6(a) 

illustrates the mesh used to analyze the deformation. Fig. 6(b) shows the geometry of the deformed mesh for Case 

A. 
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Fig. 5 

Optimal die geometries assuming exponential functions for 

shear boundaries. 

 

 
(a) 

 
(b) 

Fig.6 

(a) The finite element mesh, (b) the deformed mesh for Case A. 

 

The most common means of comparing upper bound and FEM results is through extrusion force. Values for the 

extrusion forces are evaluated from the FEM results. In Fig. 7, FEM force-displacement curves for optimal die 

shapes are compared. As shown in Fig.7, at the early stage of extrusion, unsteady state deformation occurs, and the 

materials have not yet filled up the cavity of the die completely. Thus, the extrusion force increases as the extrusion 

process proceeds. After the materials have filled up the cavity of the die completely, the extrusion force is constant. 

Because of large non-linearity of the plastic deformation processes, extrusion force curves obtained from ABAQUS 

have fluctuations as illustrated in Fig. 7. It is seen that assuming exponential boundaries for deformation zone yields 

a die shape with smaller extrusion force than that of die shape of given by assuming spherical shape boundaries, 

which is in agreement with the results obtained by the upper bound method. As expected, the predicted extrusion 

forces are greater than the FEM results, because the present theoretical values are upper bound solutions. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 

Comparison of FEM force-displacement curves for optimal 

die shapes assuming exponential functions for shear 

boundaries. 

4    CONCLUSIONS     

In this research, an upper bound model for analysis of the rod extrusion process through arbitrarily curved dies was 

developed and it was concluded that assuming exponential boundaries for deformation zone yields a better upper 
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bound value of the extrusion force compared to the extrusion force in case of spherical shape boundaries is in 

agreement with the results obtained by the finite element method. For a given extrusion conditions, there was an 

optimal die length which minimizes the extrusion force.With increasing friction factor, the extrusion force increases 

and the optimal die length becomes shorter.  

APPENDIX A 

The six relationships to determine the strain rates components are 
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