Stress Waves in a Generalized Thermo Elastic Polygonal Plate of Inner and Outer Cross Sections
Subject Areas : Engineering
1 - Department of Mathematics, Karunya University, Coimbatore-641 114, Tamil Nadu, India
Keywords:
Abstract :
[1] Nagaya K., 1981, Simplified method for solving problems of plates of doubly connected arbitrary shape, Part I: Derivation of the frequency equation, Journal of Sound and Vibration 74(4): 543-551.
[2] Nagaya K., 1981, Simplified method for solving problems of plates of doubly connected arbitrary shape, Part II: Applications and experiments, Journal of Sound and Vibration 74(4): 553-564.
[3] Nagaya K., 1981, Dispersion of elastic waves in bar with polygonal cross-section, Journal of Acoustical Society of America 70(3): 763-770.
[4] Nagaya K., 1983, Vibration of a thick walled pipe or ring of arbitrary shape in its Plane, Journal of Applied Mechanics 50: 757-764.
[5] Nagaya K., 1983, Vibration of a thick polygonal ring in its plane, Journal of Acoustical Society of America 74(5): 1441-1447.
[6] Lord H.W., Shulman Y., 1967, A generalized dynamical theory of thermo elasticity, Journal of Mechanics of Physics of Solids 5: 299-309.
[7] Dhaliwal R.S., Sherief H.H., 1980, Generalized thermo elasticity for anisotropic media, Quartely Applied Mathematics 8(1): 1-8.
[8] Green A.E., Laws N., 1972, On the entropy production inequality, Archive of Rational Mechanical Analysis 45: 47-53.
[9] Green A.E., Lindsay K.A.,1972,Thermo elasticity, Journal of Elasticity 2: 1-7.
[10] Suhubi E.S., 1964, Longitudinal vibrations of a circular cylindrical coupled with a thermal field, Journal of Mechanics of Physics of Solids 12: 69-75.
[11] Erbay E.S., Suhubi E.S., 1986, Longitudinal wave propagation of thermoelastic cylinder, Journal of Thermal Stresses 9: 279-295.
[12] Sharma J.N., Sharma P.K., 2002, Free vibration analysis of homogeneous transversely isotropic thermoelastic cylindrical panel, Journal of Thermal Stresses 25: 169-182.
[13] Sharma J.N., Kumar R., 2004, Asymptotic of wave motion in transversely isotropic plates, Journal of Sound and Vibration 274: 747-759.
[14] Ashida F., Tauchert T.R., 2001, A general plane-stress solution in cylindrical coordinates for a piezoelectric plate, International Journal of Solids and Structures 30: 4969-4985.
[15] Ashida F.,2003,Thermally-induced wave propagation in piezoelectric plate, Acta Mechanica 161: 1-16.
[16] Tso Y.K., Hansen C.H., 1995, Wave propagation through cylinder/plate junctions, Journal of Sound and Vibration 186(3): 447-461.
[17] Heyliger P.R., Ramirez G., 2000, Free vibration of Laminated circular piezoelectric plates and disc, Journal of Sound and Vibration 229(4): 935-956.
[18] Gaikward M.K., Deshmukh K.C., 2005, Thermal deflection of an inverse thermoelastic problem in a thin isotropic circular plate, Journal of Applied Mathematical Modelling 29: 797-804.
[19] Varma K.L., 2002, On the propagation of waves in layered anisotropic media in generalized thermo elasticity, International Journal of Engineering Sciences 40: 2077-2096.
[20] Ponnusamy P., 2007, Wave propagation in a generalized thermoelastic solid cylinder of arbitrary cross- section, International Journal of Solids and Structures 44: 5336-5348.
[21] Ponnusamy P., 2013, Wave propagation in a piezoelectric solid bar of circular cross-section immersed in fluid, International Journal of Pressure Vessels and Piping 105: 12-18.
[22] Jiangong Y., Bin W., Cunfu H., 2010, Circumferential thermoelastic waves in orthotropic cylindrical curved plates without energy dissipation, Ultrosonics 53(3):416-423.
[23] Jiangong Y., Tonglong X., 2010, Generalized thermoelastici waves in spherical curved plates without energy dissipation, Acta Mechanica 212: 39-50.
[24] Jiangong Y., Xiaoming Zh., Tonglong X., 2010, Generalized thermoelastici waves in functionally graded plates without energy dissipation, Composite Structures 93(1): 32-39.
[25] Kumar R. , Chawla V., Abbas I.A., 2012, Effect of viscosity on wave propagation in anisotropic thermoelastic medium with three-phase-lag model, Theoretical and Applied Mechanics 39(4): 313-341.
[26] Kumar R., Abbas I. A., 2014, Response of thermal source in initially stressed generalized thermoelastic half-space with voids, Journal of Computational and Theoretical Nanoscience 11: 1-8.
[27] Kumar R., Abbas I. A., Marin M., 2015, Analytical numerical solution of thermoelastic interactions in a semi-infinite medium with one relaxation time, Journal of Computational and Theoretical Nanoscience 12: 1-5.
[28] Ponnusamy P., Selvamani R., 2012, Dispersion analysis of generalized magneto-thermoelastic waves in a transversely isotropic cylindrical panel, Journal of Thermal Stresses 35: 1119-1142.
[29] Ponnusamy P., Selvamani R., 2013, Wave propagation in magneto thermo elastic cylindrical panel, European Journal of Mechanics-A solids 39: 76-85.
[30] Selvamani R., Ponnusamy P., 2013, Wave propagation in a generalized thermo elastic plate immersed in fluid, Structural Engineering and Mechanics 46(6): 827-842.
[31] Selvamani R., Ponnusamy P., 2014, Dynamic response of a solid bar of cardioidal cross-sections immersed in an inviscid fluid, Applied Mathematics and Information Sciences 8(6): 2909-2919.
[32] Mirsky I., 1964, Wave propagation in a transversely isotropic circular cylinders, Part I: Theory, Part II: Numerical results, Journal of Acoustical Society of America 37(6): 1016-1026.
[33] Antia H.M., 2002, Numerical Methods for Scientists and Engineers, Hindustan Book Agency, New Delhi.