
 

© 2017 IAU, Arak Branch. All rights reserved.                                                                                                    

Journal of Solid Mechanics Vol. 9, No. 2 (2017) pp. 263-275 

Stress Waves in a Generalized Thermo Elastic Polygonal 
Plate of Inner and Outer Cross Sections 

R. Selvamani
 *
  

Department of Mathematics, Karunya University, Coimbatore-641 114, Tamil Nadu, India 

Received 9 February 2017; accepted 30 March 2017 

 ABSTRACT 

 The stress wave propagation in a generalized thermoelastic polygonal plate of inner and 

outer cross sections is studied using the Fourier expansion collocation method. The 

wave equation of motion based on two-dimensional theory of elasticity is applied under 

the plane strain assumption of generalized thermoelastic plate of polygonal shape, 

composed of homogeneous isotropic material.  The frequency equations are obtained 

by satisfying the irregular boundary conditions along the inner and outer surface of the 

polygonal plate. The computed non-dimensional wave number and wave velocity of 

triangular, square, pentagonal and hexagonal plates are given by dispersion curves for 

longitudinal and flexural antisymmetric modes of vibrations. The roots of the frequency 

equation are obtained by using the secant method, applicable for complex roots. 

                                 ‎                                 © 2017 IAU, Arak Branch.All rights reserved. 

 Keywords : Waves in thermal plate; Piezoelectric plate; Layered plate; Collocation 

method; Thermal relaxation times; Temperature sensors. 

1    INTRODUCTION 

HE effect of mechanical and thermal disturbance in an elastic body is known as thermoelasticity. In the 

classical coupled and uncoupled theory of thermo elasticity, the heat conductions are of diffusion type which 

will propagate infinite heat pulses and is physically absurd. To overcome such defect, the generalized theories of 

thermoelasticity of the coupled theory which will propagate finite heat pulses, with temperature-rate dependent have 

been developed. The propagation of  stress waves in thermoelastic materials with polygonal shape has many 

applications in various fields of science and technology, namely, atomic physics, industrial engineering, thermal 

power plants, submarine structures, pressure vessels, aerospace, chemical pipes  and metallurgy. Nagaya[1,2,3,4,5] 

devised a method to solve wave propagation in polygonal plates and to find out the phase velocities in different 

modes of vibrations, namely, longitudinal, torsional and flexural, by constructing frequency equations.He 

formulated the Fourier expansion collocation method for this purpose and the same method is used in this paper. 

Lord and Shulman [6] developed the generalized theory of thermo elasticity by involving one relaxation time for 

isotropic homogeneous media, which is called the first generalization to the coupled theory of elasticity. These 

equations determine the finite speeds of propagation of heat and displacement distributions. Dhaliwal and Sherief 

[7] were obtained the corresponding equations for anisotropic materials. A generalization of thermal signals with 

two relaxation times was proposed by Green and Laws [8]. Green and Lindsay [9] obtained an explicit version of the 

constitutive equations. These equations were also obtained independently by Suhubi [10]. This theory contains two 

constants that act as relaxation times and modify not only the heat equations, but also all the equations of the 

coupled theory. The classical Fourier’s law of heat conduction is not violated if the medium under consideration has 
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a center of symmetry. Erbay and Suhubi [11] studied the longitudinal wave propagation in a generalized 

thermoplastic infinite cylinder and obtained the dispersion relation for a constant surface temperature of the 

cylinder. Sharma and Sharma [12] investigated the free vibration of homogeneous transversely isotropic 

thermoelastic cylindrical panel using Bessel functions. Asymptotic wave motion in transversely isotropic plates was 

analyzed by Sharma and Kumar [13]. Ashida and Tauchert [14] have presented the temperature and stress analysis 

of an elastic circular cylinder in contact with heated rigid stamps. Later, Ashida [15] presented the thermally - 

induced wave propagation in a piezoelectric plate. Tso and Hansen [16] studied the wave propagation through 

cylinder/plate junctions. Heyliger and Ramirez [17] analyzed the free vibration characteristics of laminated circular 

piezoelectric plates and disc by using a discrete-layer model of the weak form of the equations of periodic motion. 

Thermal deflection of an inverse thermoelastic problem in a thin isotropic circular plate was presented by Gaikward 

and Deshmukh [18]. Varma [19] presented the propagation of waves in layered anisotropic media in generalized 

thermoelasticity in an arbitrary layered plate. Ponnusamy [20,21] studied the wave propagation in a generalized 

thermoelastic solid cylinder of arbitrary cross-section and wave propagation in a piezoelectric solid bar of circular 

cross-section immersed in fluid, respectively using the Fourier expansion collocation method. Jiangong et al., [22] 

discussed the circumferential thermoelastic waves in orthotropic cylindrical curved plates without energy 

dissipation. Later, Jiangong with  Tonglong [23] presented  the propagation of thermoelastic waves in orthotropic 

spherical curved plates subjected to stress-free, isothermal boundary conditions  in the context of the Green–Naghdi 

(GN) generalized thermoelastic theory (without energy dissipation). Jiangong et al., [24] analyzed the wave 

propagation of generalized thermoelastic waves in functionally graded plates without energy dissipation. The effect 

of viscosity on wave propagation in anisotropic thermoelastic medium with Three-phase-lag model has been 

investigated by Rajneesh Kumar et al.[25].Later, Rajneesh Kumar and Ibrahim[26] studied the response of thermal 

source in initially stressed generalized thermoelastic half-space with voids. Recently, Rajneesh Kumar et al[27] 

evaluated the analytical numerical solution of thermoelastic interactions in a semi-infinite medium with one 

relaxation time. The dispersion analysis of generalized magneto-thermoelastic waves and the wave propagation in a 

magneto-thermo elastic waves in a transversely isotropic cylindrical panel using the wave propagation approach 

were investigated respectively by Ponnusamy and Selvamani [28,29]. The wave propagation in a generalized thermo 

elastic plate immersed in fluid was analyzed by Selvamani and Ponnusamy [30]. Recently, Selvamani and 

Ponnusamy [31] have studied the dynamic response of a solid bar of cardioidal cross-sections immersed in an 

inviscid fluid using Fourier expansion collocation method.                                             

In this paper, free vibration of generalized thermoelastic polygonal plate of inner and outer cross sections 

composed of homogeneous isotropic material is studied based on Lord-Shulman (LS) thermo elastic equation using 

the Fourier expansion collocation method along the irregular boundaries. The solutions to the equations of motion 

for an isotropic medium is obtained by using the two dimensional theory of elasticity. The computed non-

dimensional wave number and velocity of triangular, square, pentagonal and hexagonal plates are given by 

dispersion curves for longitudinal and flexural antisymmetric modes of vibrations.  

 

(a) 

1

2

b

a

h

 
0 1

1 2

2

0 60

120 180

180 2I

 

 



 

 

 

 (b)
a

b

h

h

h

12

 
0 1

1 2

2

0 45

90 135

180 2I

 

 



 

 

 

 

 

  

 (c) 

1

2

3

a
b

h

 
0 1

1 2

2 3

3

0 0

36 72

108 144

180 3I

 

 

 



 

 

 

 

 
(d)

1

2

3
a

b

h

  

0 1

1 2

2 3

3

0 30

60 72

120 150

180 3I

 

 

 



 

 

 

 

 

Fig.1 

Geometry of ring shaped polygonal plates((a) Triangle (b) Square (c)Pentagon(d) Hexagon). 
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2    MODEL OF THE PROBLEM 

The author considers a homogeneous, isotropic, thermally conducting elastic polygonal plate with uniform 

temperature 
0T  in the undisturbed state initially. The system displacements and stresses are defined by the polar 

coordinates r and   in an arbitrary point inside the plate and denote the displacements 
ru  in the direction of r and 

u  in the tangential direction  . The in-plane vibration and displacements of polygonal plate is obtained by 

assuming that there is no vibration and displacement along the z-directions in the cylindrical coordinate 

system  , ,r z . The two dimensional stress equations of motion, strain displacement relations and heat conduction 

equation in the absence of body forces for a linearly elastic medium are considered from Sharma and Sharma [12] 

as: 

 

 1 1 1 1

, , , ,, 2rr r r rr r r r rr r u r r u                           

(1) 

 

      
2

1 2 1

, , , 0 0 1 0 , ,2rr r v k r r rK T r T r T c T t T T t u r u u
t t

        
             

 
 

(2) 

 

and 

 

       1 2 1 22 , 2rr rr rr k rr ke e e T t T e e e T t T                       (3) 

 

2r re    (4) 

 

where , ,rr r     are the stress components, , ,rr re e e   are the strain components, T is the temperature change 

about the equilibrium temperature 
0 ,T   is the mass density, 

vc  is the specific heat capacity,   is the thermal 

capacity factor that couples the heat conduction and elastic field equations, K is the thermal conductivity, 
0 1,t t  are 

the two thermal relaxation times, t is the time,   and   are Lame’s constants. The comma notation is used for 

spatial derivatives; the superposed dot represents time differentiation, and 
ij  is the Kronecker delta. In addition, 

1k   for Lord-Shulman (LS) theory and 2k   for Green-Lindsay (GL) theory. The thermal relaxation times 
0t   

and 
1t  satisfy the inequalities 

0 1 0t t   for GL theory only and we assume that
00, 0T   , and 0vc  . The 

strain 
ije related to the displacements are given by 

 

   1 1

, , , ,, ,rr r r r r r re u e r u u e u r u u      

        (5) 

2.1 Lord-Shulman (LS) thermoelastic model 

The Lord-Shulman theory of heat conduction equation is obtained by substituting 1k  in the Eqs. (2) and (3) 

 

      
2

1 2 1

, , , 0 0 0 , ,2rr r v r r rK T r T r T c T t T T t u r u u
t t

       
             

 
 

(6) 

and 

 

   2 , 2rr rr rr rre e e T e e e T                   (7) 

 

Substituting Eqs.(3)-(5) and (7) in Eqs.(1) and (6), the displacement equations of motions are obtained as: 
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      

       

   

1 2 2 1 2

, , , , , ,

1 2 2 2 1

, , , , , ,

2
1 2 1

, , , 0 0 0 , ,2

2 3

2 3

r rr r r r r r r r

rr r r r r

rr r v r r

u r u r u r u r u r u T u

u r u r u r u r u r u T u

K T r T r T c T t T T t u r u
t t

    

        

 

        

        

 

    

    

  

         

         

  
       

  
  ru

 
 

 

 

 

(8) 

3    SOLUTION OF THE PROBLEM 

Eq.(8) is a coupled partial differential equation with two displacements and heat conduction components. To 

uncouple Eq.(8), we follow the solutions by Mirsky [32]  by assuming that the vibration and displacements along the 

axial direction  z  is equal to zero, and assuming the solutions of the Eq.(8) in the form 

 

     

     

     

1 1

, ,, ,

0

1 1

, ,, ,

0

2

0

, ,

, ,

, , 2

i t

n r nr n n r n

n

i t

n n rn n n r

n

i t
nn n

n

u r t r r e

u r t r r e

T r t a T T e







 



     

     

    


 




 







    
 

    
 

  







 

 

 

 

(9) 

 

where 
1

2
n    for 0, 1nn    for 1, 1,n i     is the angular frequency,          , , , , , , , , ,n nn n nr r T r r r          

and  ,nT r   are the displacement potentials. To facilitate the solution following dimensionless quantities are 

introduced:    2 2

0 0 0 0 0 1 1, , 1 , , , , 1 ,v a

r
x t i K K aT d c T T t a t i

a


            


           

 2 2 2 2 2

1 12 , ,ic a c c        is the phase velocity.  Substituting Eq.(9) in Eq.(8), we obtain 

 

     2 2 2 22 0, 0n n n nT i K d T             
 

(10) 

 

and 

 

 2 2 0n    (11) 

 

where 2 2 2 1 2 2 2x x x x            , Eliminating 
nT  from the Eq. (10), we obtain 

 

 4 2 0nA B C       (12) 

 

where 

 

    2 2
1 2 , 2 1 ,A i K B d i K C d          (13) 

 

In which A, B and C are arbitrary constants and are used to find the roots of the Eq. (12). The solution of Eq. (12) 

for the symmetric mode is 
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       
2 2

1 1

cos , cosn in n i in n i n i in n i in n i

i i

A J ax B Y ax n T a A J ax B Y ax n      
 

            
 

(14) 

 

where 
nJ  is the Bessel function of first kind of order n and 

nY  is the Bessel function of second kind of order n, 

 
2

i a  are the roots of the equation    
4 2

0A a B a C     and the constant   2 22 , 1,2ia i     .  

Solving Eq.(11), we get the solution for the symmetric mode as: 

 

   3 3 3 3 sinn n n n nA J ax B Y ax n        (15) 

 

The solutions for the antisymmetric mode , nn T and n  are obtained from Eqs. (14) and (15) by replacing 

sin n  by cosn  and cosn  by sin n . If  
2

0 ( 1,2,3)i a i   , then the Bessel functions 
nJ  and 

nY  are to be 

replaced by the modified Bessel function 
nI  and 

nK  respectively. The integration contants  , 1,2,3in inA B i   are 

to be determined from the boundary conditions. 

4    BOUNDARY CONDITIONS AND FREQUENCY EQUATIONS 

In this problem, the free vibration of polygonal (triangle, square, pentagon and hexagon) plate of inner and outer 

cross sections is considered. Since the boundary of the polygonal cross-sectional plate is irregular in shape, it is 

difficult to satisfy the boundary conditions along the outer and inner surface of the plate directly. Hence, from 

context of Nagaya [1,2,3,4,5], the Fourier expansion collocation method is applied. Thus, the boundary conditions 

along the outer boundary of the plate is obtained as: 

 

      0xx xyi ii
T     (16) 

 

and for the inner boundary, the boundary conditions are 

 

      0xx xyi ii
T       (17) 

 

where x is the coordinate normal to the boundary and y is the coordinate tangential to the boundary, ,xx xx    are the 

normal stresses, ,xy xy   are the shearing stresses, ,T T  are the thermal fields and  
i

is the value at the i-th  

segment of the outer and inner boundary respectively.  Since the angle 
i  between the reference axis and the normal 

to the i-th straight line boundary has a constant value in the segment as shown in Fig. 2, we can obtain the 

transformed equations of the normal stress '

xx and shearing stress
'

xy for the i-th segment of the boundary are 

expressed as Nagaya [4] is 

 

        

    

         

1 2 1 2

, , , ,

1

, ,

1 1

, , , ,

2 { cos sin

0.5 sin 2 }

sin 2 sin 2

xx r r r r r i r i

r r i

xy r r r i r r i

u r u u u r u u

r u u u T

u r u u r u u u

   

  

    

      

  

     

 



 

        

    

        

 

 

 

(18) 

 

Substituting Eqs.(14) , (15) in Eqs.(16) and (17), and performing  Fourier series expansion to the boundary, the 

boundary condition along the inner and outer surfaces are expanded in the form of double Fourier series. When the 

plate is symmetric about more than one axis, the boundary conditions in the case of symmetric mode can be written 

in the form of a matrix as given below: 
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1 2 3 4 1 1 2 2 3 3 4 4 5 5 6 6

00 00 00 00 01 0 01 0 01 0 01 0 01 0 01 0

1 2 3 4 1 1 2 2 3 3 4 4 5 5 6 6

0 0 0 0 1 1 1 1 1 1

1 2 3 4 1 1 2 2 3 3

10 10 10 10 11 1 11 1 11 1

N N N N N N

N N N N N NN N NN N NN N NN N NN N NN

N N N

E E E E E E E E E E E E E E E E

E E E E E E E E E E E E E E E E

F F F F F F F F F F F
4 4 5 5 6 6
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1 2 3 4 1 1 2 2 3 3 4 4 5 5 6 6
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00 00 00 00 01 0 01 0 01 0 01 0 01 0 01 0

N N N

N N N N N NN N NN N NN N NN N NN N NN

N N N N N N

N

F F F F F

F F F F F F F F F F F F F F F F

G G G G G G G G G G G G G G G G

G
1 2 3 4 1 1 2 2 3 3 4 4 5 5 6 6

0 0 0 0 1 1 1 1 1 1

1 2 3 4 1 1 2 2 3 3 4 4 5 5 6 6

00 00 00 00 10 0 10 0 10 0 10 0 10 0 10 0
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0 0 0 0 1 1 1 1
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N N N N N N

N N N N N NN N NN N NN N

G G G G G G G G G G G G G G G

E E E E E E E E E E E E E E E E

E E E E E E E E E E E 4 4 5 5 6 6

1

1 2 3 4 1 1 2 2 3 3 4 4 5 5 6 6

10 10 10 10 11 1 11 1 11 1 11 1 11 1 11 1

1 2 3 4 1 1 2 2 3 3 4 4 5 5 6 6

0 0 0 0 1 1 1 1 1 1

1 2 3 4 1

00 00 00 00 00

NN NN NN N NN

N N N N N N

N N N N N NN N NN N NN N NN N NN N NN

E E E E E

F F F F F F F F F F F F F F F F

F F F F F F F F F F F F F F F F

G G G G G 1 2 2 3 3 4 4 5 5 6 6

0 00 0 00 0 00 0 00 0 00 0

1 2 3 4 1 1 2 2 3 3 4 4 5 5 6 6

0 0 0 0 1 1 1 1 1 1 1 1

N N N N N N
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20

20
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1
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A

B

A

B

A

A

B

B

A

A

B
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(19) 

 

In which 

 

1 1

1 1

1 1

1 1

1 1

1

2 , cos , 2 , sin

2 , cos , 2 , cos

2 , sin , 2 ,

i i

i i

i i

i i

i i

i i

I Ij j
j j

mn i mn in n n n

i i

I Ij
j j j

imn n n mn n n i

i i

I
j j j j

mn n n i mn n n i

i

E e R m d F f R m d

G g R m d E e R m d

F f R m d G g R
1

cos
I

i

m d

 

 

 

 

 

(20) 

 

where 1,2,3,4,5j  and 6 , I is the number of segments, 
iR is the coordinate r̂  at the inner boundary, 

iR is the 

coordinate  r  at the outer boundary and N is the number of truncation of the Fourier series. The coefficients 
j j

n ne g   are given in Appendix A. 
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Geometry of a straight line segment. 
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4.1 Boundary conditions and frequency equation for clamped edge boundary 

The boundary conditions for rigidly fixed boundary is obtained by assuming that the displacements along the radial 

direction 
ru , along the circumferential direction u and the thermal field T is equal to zero, thus we get the 

boundary condition  for the outer surface as: 

 

      0r i i i
u u T     

 

and the boundary condition for the inner surface of the plate as: 

 

     ' ' ' 0r i i i
u u T    (21) 

 

Using  Eq. (9) in  Eq. (21), we can obtain the frequency equations for rigidly fixed boundary in the following 

form; 0,( , 1,2,3,4,5,6)ijb i j  .Where  

 

        

        
 

        

        

1 1 13 3

2 23 3 3 1 3

3 33

4 1 43 3

5 53 3 3 1 3

6

, 1,2,

, 1,2,

, 1,2, 0

, 1,2,

, 1,2,

i n i i n i n

i n i n n

i i n i

i n i i n i n

i n i n n

i i n

b nJ ax ax J ax i b nJ ax

b nJ ax i b nJ ax ax J ax

b d J ax i b

b nJ bx bx J bx i b nJ bx

b nJ bx i b nJ bx bx J bx

b d J

   

   



   

   









   

   

  

   

   

   63, 1,2, 0i ax i b  

 

 

 

 

 

(22) 

        
 

The remaining terms  2 3 4 5 6, , , , , , 4,5,6ij j j j j jb b b b b b j  are obtained by replacing 
nJ  and 

1nJ 
  with 

nY  and 

1nY 
  respectively, and the constant    22 2i id a     

  
. 

 
                                 

5    NUMERICAL RESULTS AND DISCUSSION 

The numerical analysis of the frequency equation is carried out for generalized thermoelastic doubly connected 

polygonal (square, triangle, pentagon and hexagon) plates, and the dimensions of each plate used in the numerical 

calculation are shown in Fig. 2. The computation of Fourier coefficients given in Eq.(20) is carried out using the five 

point Gaussian quadrature. The material properties of copper at 42 K are taken  from Erbay and Suhubi [11] as 

Poisson ratio 0.3   density 3 38.96 10 /kg m  
 
the Young’s modulus 11 2 11 22.139 10 / , 8.20 10 / ,E N m kg ms     

10 2 2 2 24.20 10 , 9.1 10kg ms c m ks     and 2 2113 10K kgm ks  , and the thermal relaxation time 

considered  from Sharma  and Sharma [12] as 13

0 0.75 10 sect   . The geometric relations for the polygonal cross-

sections given by Nagaya [4] 

 

 
1

cosi iR b  


     
(23) 

 

where b is the apothem. In the numerical calculation, the angle  is taken as an independent variable and the 

coordinate 
iR   and iR   are at the i-th segment of the boundary is expressed in terms of  . Substituting , iiR R and 

the angle
i , between the reference axis and the normal to the ith boundary line, the integrations of the Fourier 
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coefficients , , , ,
i i

i i i
nnn n ne f g e f , and 

i

n
g  can be expressed in terms of the angle  . Using these coefficients in to the 

Eq.(20),  the frequencies are obtained for generalized thermoelastic polygonal plate.   

5.1 Longitudinal mode of polygonal plates 

In longitudinal mode of square and hexagonal cross-section, the cross-section vibrates along the axis of the plate, so 

that the vibration displacements in the cross-sections are symmetrical about both the major and the minor axes. 

Hence the frequency equations are obtained by choosing both the terms of m  and n  as 0,2,4,6,… in Eq. (19) for the 

numerical calculations. In the case of triangle and pentagonal shaped plate, the vibration and displacements are 

symmetrical about the major axis alone, hence the frequency equations are obtained from Eq. (19) by choosing m 

and n as 0,1,2,3,…. Since the boundary of the plate namely, triangle, square, pentagon and hexagon are irregular, it 

is difficult to satisfy the boundary conditions along the curved surface, and hence Fourier expansion collocation 

method is applied. That is the curved surface, in the range 0    and     is divided into 20 segments, such that 

the distance between any two segments is negligible and the integrations is performed for each segment numerically 

by using the Gauss five point formula. The non-dimensional frequencies  are computed for 0 1.0 , using the 

secant method (applicable for the complex roots, (Antia [33]). 

5.2 Flexural mode of polygonal plates 

In flexural mode of square and hexagonal cross-section, the vibration and displacements are antisymmetrical about 

the major axis and symmetrical about the minor axis. Hence the frequency equation is obtained from Eq.  (19) by 

changing cosn  by sin n and sin n by cosn  and choosing , 1,3,5,7....n m  . In the case of triangle and 

pentagonal plate, the vibration and displacements are antisymmetrical about the minor axis, hence the frequency 

equations is obtained by choosing , 1,2,3...n m  . The geometric relation for the polygonal plate is given in Eq. 

(23), which is used for the numerical calculation. The notations used in the figures namely ICOF and IFOC denote 

the Inner Clamped and Outer Free edges and Inner Free and Outer Clamped edges, respectively. 

5.3 Dispersion analysis 

   The Variation of non-dimensional wave number versus non-dimensional frequency of longitudinal modes of 

polygonal cross-sectional plate is discussed with different boundary conditions and aspect ratio in Figs. 3-6. From 

Figs. 3 and 4, the dispersion of the non-dimensional wave number is steady and increasing in triangular and square 

cross sectional plates for the longitudinal modes. This behavior is observed oscillating in Figs. 5 and 6 for the  

flexural antisymmetric modes of pentagonal and hexagonal cross sections with increasing aspect ratio. The effect of 

wave number of the inner boundary when it is free or simply supported is large compared with that of inner clamped 

edge boundary conditions. 

Graphs are drawn for ICOF and IFOC edge boundary conditions for the velocity versus dimensionless frequency  

for longitudinal modes of triangular and square plates respectively and are shown in the Fig.7 and Fig.8. From the 

Figs.7 and 8, it is observed that, the velocity increases with respect to its non dimensional frequency, also it is noted 

that the velocity for IFOC surface have higher in magnitude than the velocity of ICOF edge boundary conditions.  

The wave velocity is minimum in the lower range of frequency and increase for higher modes of frequency, and the 

cross over points in the trend line indicates, the transfer of heat energy between the modes of vibrations. The transfer 

of heat energy in the distribution of velocity is higher in the lower modes of frequency and become steady in the 

higher modes of frequency. 

A comparison is made between wave velocity and non dimensional frequency with ICOF and IFOC edge 

boundary conditions of longitudinal and flexural antisymmetric modes of pentagonal and hexagonal cross sections 

in Fig. 9 and Fig. 10.  From the Figs. 9 and 10, it is observed that  the velocity is higher for a ICOF plate as 

comparing with the other boundary condition IFOC.  From the figures, it is observed that the increasing trend both 

in frequency and velocity with little deviations in the dispersion characteristics is an indication of up gradation of 

strength of material. The crossover points denote the transfer of heat energy between the modes of vibrations. 
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Fig.3 

Variation of non-dimensional wave number versus non-

dimensional frequency of longitudinal modes of triangular 

cross-sectional plate. 

  

 

 

 

 

 

 

 

 

 

 

Fig.4 

Variation of non-dimensional wave number versus non-

dimensional frequency of longitudinal modes of square 

cross-sectional plate. 

 

  

 

 

 

 

 

 

 

 

 

 

Fig.5 

Variation of non-dimensional wave number versus non-

dimensional frequency of flexural  anti symmetric modes for 

pentagonal cross-sectional plate. 

  

 

 

 

 

 

 

 

 

 

 

Fig.6 

Variation of non-dimensional wave number versus non-

dimensional frequency of flexural anti symmetric modes for  

hexagonal cross-sectional plate.  
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Fig.7 

Variation of velocity versus non-dimensional frequency of 

longitudinal modes for triangular cross-sectional plate. 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.8 

Variation of velocity versus non-dimensional frequency of 

longitudinal modes for square cross-sectional plate. 

 

  

 

 

 

 

 

 

 

 

 

 

Fig.9 

Variation of velocity versus non-dimensional frequency of 

longitudinal modes for pentagonal cross-sectional plate. 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.10 

Variation of velocity versus non-dimensional frequency of 

longitudinal modes for hexagonal cross-sectional plate.  
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APPENDIX A 

The expressions i i
n ne g  used in Eq. (20) are given as follows: 

 

 

   

 

1

2 2 2

1

2 ( 1) ( ) ( ) ( ) cos 2( )cos

( ) 2cos ( ) cos

2 ( 1) ( ) ( ) ( ) sin sin 2( ), 1,2

i

n n i i n i i

i i i n i

n i i n i i

e n n J ax ax J ax n

x a a J ax n

n n J ax ax J ax n i

     

     

     





   

     
 

    
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(A.8) 

 

        1cos 1 cos( )cos , 1,2i

n i i n i i n i ik d n n J ax ax J ax n i                
(A.9) 

                                                       
3 40.0, 0.0n nk k     (A.10) 

 

        1cos 1 cos( )cos , 5,6i

n i i n i i n i ik d n n Y ax ax Y ax n i                
(A.11) 

 

The expressions 
i i

n ne g  is obtained by replacing cosn   by sin n  and sin n  by cosn  by the Eqs. (A.1) - 

(A.11). 
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6    CONCLUSIONS 

Free vibration analysis of generalized thermoelastic polygonal shaped plate of inner and outer cross section is 

studied using the Fourier expansion collocation method. The equations of motion based on two-dimensional theory 

of elasticity are applied under the plane strain assumption of generalized thermoelastic plate of polygonal shape 

composed of homogeneous isotropic material.  The frequency equations are obtained by satisfying the boundary 

conditions along the inner and outer surface of the polygonal plate. The numerical calculations are carried out for 

triangular, square, pentagonal and hexagonal shaped plates. The dispersion curves are drawn for longitudinal and 

flexural antisymmetric modes of polygonal plates. The polygonal plates, as structural elements, are widely used in 

construction of oil pipes, submarine and flight structures to ensure the strength and reliability, acted upon by 

nonuniform loads. 
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