Mechanical and Thermal Stresses in a FGPM Hollow Cylinder Due to Non-Axisymmetric Loads
Subject Areas : EngineeringM Jabbari 1 , M Meshkini 2 , M.R Eslami 3
1 - South Tehran Branch, Islamic Azad University
2 - South Tehran Branch, Islamic Azad University
3 - Department of Mechanical Engineering, Amirkabir University of Technology
Keywords:
Abstract :
[1] Lutz M.P., Zimmerman R.W., 1996, Thermal stresses and effective thermal expansion coefficient of functionally graded sphere, Journal of Thermal Stresses 19:39-54.
[2] Zimmerman R.W., Lutz M.P., 1999, Thermal stresses and thermal expansion in a uniformly heated functionally graded cylinder, Journal of Thermal Stresses 22: 177-188.
[3] Jabbari M., Sohrabpour S., Eslami MR., 2003, General solution for mechanical and thermal stresses in functionally graded hollow cylinder due to radially symmetric loads, ASME Journal of Applied Mechanics 70: 111-118.
[4] Poultangari R., Jabbari M., Eslami M.R., 2008, Functionally graded hollow spheres under non-axisymmetric thermo-mechanical loads, International Journal of Pressure Vessels and Piping 85: 295-305.
[5] Shariyat M., Lavasani S.M.H., Khaghani M., 2009, Transient thermal stress and elastic wave propagation analyses of thick temperature-dependent FGM cylinders, using a second-order point-collocation method, Applied Mathematical Modelling, doi:10.1016/j.apm.2009.07.007.
[6] Lü C.F., Chen W.Q., Lim C.W., 2009, Elastic mechanical behavior of nano-scaled FGM films incorporating surface energies, Composites Science and Technology 69: 1124-1130.
[7] Afsar A.M., Sekine H., 2002, Inverse problems of material distributions for prescribed apparent fracture toughness in FGM coatings around acircular hole in infinite elastic media, Composites Science and Technology 62: 1063-1077.
[8] Zhang D.-G., Zhou Y.-H., 2008, A theoretical analysis of FGM thin plates based on physical neutral surface, Computational Materials Science 44: 716-720.
[9] Fazelzadeh S.A.., Hosseini M., 2007, Aerothermoelastic behavior of supersonic rotating thin-walled beams made of functionally graded materials, Journal of Fluids and Structures 23: 1251-1264.
[10] Ootao Y., Tanigawa Y., 2004, Transient thermoelastic problem of functionally graded thick strip due to non-uniform heat supply, Composite Structures 63(2): 139-146.
[11] Jabbari M., Sohrabpour S., Eslami M.R., 2002, Mechanical and thermal stresses in a functionally graded hollow cylinder due to radially symmetric loads, International Journal of Pressure Vessels and Piping 79: 493-497.
[12] Farid M., Zahedinejad P., Malekzadeh P., 2010, Three-dimensional temperature dependent free vibration analysis of functionally graded material curved panels resting on two-parameter elastic foundation using a hybrid semi-analytic, differential quadrature method, Materials and Design 31: 2-13.
[13] Bagri A., Eslami M.R., 2008, Generalized coupled thermoelasticity of functionally graded annular disk considering the Lord–Shulman theory, Composite Structures 83: 168-179.
[14] Samsam Shariat B.A., Eslami M.R., 2007, Buckling of thick functionally graded plates under mechanical and thermal loads, Composite Structures 78: 433–439.
[15] Jabbari M., Bahtui A., Eslami MR., 2009, Axisymmetric mechanical and thermal stresses in thick short length functionally graded material cylinder, International Journal of Pressure Vessels and Piping 86: 296-306.
[16] Thieme M., Wieters K.-P., Bergner F., Scharnweber D., Worch H., Ndop J., Kim T.J., Grill., 1999, Titanium powder sintering for preparation of a porous FGM Destined as a skeletal replacement implant, Materials Science Forum 308-311: 374-382.
[17] Biot M.A., 1935, Le proble'me de la consolidation des matie'res argileuses sous une charge, Annales de la Societe Scientifique de Bruxelles B 55: 110-113.
[18] Biot M.A.., 1941, General theory of three-dimensional consolidation, Journal of Applied Physics 12: 155-164.
[19] De Boer R., 1996, Highlights in the historical development of the porous media theory: toward a consistent macroscopic theory, Applied Mechanics Reviews 49: 201-262.
[20] Detournay E., Cheng A.H.-D., 1993, Fundamentals of Poroelasticity, in: Comprehensive Rock Engineering: Principles, Practice and Projects, edited by J.A. Hudson, Pergamon, Oxford, 113-171.
[21] Sandhu R.S., Wilson E.L., 1969, Finite element analysis of seepage in elastic media, ASCE Journal of the Engineering Mechanics 95: 641-652.
[22] Detournay E., Cheng A.H.-D.,1993, Fundamentals of Poroelasticity, in: Comprehensive Rock Engineering: Principles, Practice and Projects, Chapter 5, vol. II, Analysis and Design Method, edited by C. Fairhurst, Pergamon Press, 113-171.
[23] Abousleiman Y., Ekboote S., 2005, solutions for inclined borehole in porothermoelastic transversely isotropic medium, ASME Journal of Applied Mechanics 72(2): 102-114.
[24] Chen P.Y.P., 1980, Axismmetric thermal stresses in an anisotropic finite hollow cylinder, Journal of Thermal Stresses 6(2-4): 197-205.
[25] Bai B., 2006, Fluctuation responses of saturated porous media subjected to cyclic thermal loading, Computers and Geotechnics 33: 396-403.
[26] Wang Y., Papamichos E., 1994, An analytical solution for conductive heat flow and the thermally induced fluid flow around a wellbore in a poroelastic medium, Water Resource Research 36(5): 3375-3384.
[27] Wang Y., Papamichos E., 1999, Thermal effects on fluid flow and hydraulic fracturing from wellbores and cavities in low-permeability formations, International Journal for Numerical and Analytical Methods in Geomechanics 23(15): 1819-1834
[28] Ghassemi A., Tao Q., 2009, Influence of coupled chemo-poro-thermoelastic processes on pore pressure and stress distributions around a wellbore in swelling shale, Journal of petroleum science and Engineering 67: 57-64
[29] Wirth B., Sobey I., 2006, An axisymmetric and fully 3D poroelastic model for the evolution of hydrocephalus, Mathematical Medicine and Biology 23:363-388.
[30] Yang D., Zhang Z., 2002, Poroelastic wave equation including the Biot/squirt mechanism and the solid/fluid coupling anisotropy, Wave Motion 35: 223-245
[31] Arora A., Tomar S.K., 2007, Elastic waves along a cylindrical borehole in a poroelastic medium saturated by two immiscible fluids, Journal of Earth System Science 116(3): 225-234.
[32] Hamiel Y., Lyakhovsky V., Agnon A., 2004, Coupled evolution of damage and porosity in poroelastic media: theory and applications to deformation of porous rocks, Geophysical Journal International 156: 701-713
[33] Ghassemi A., 2007, Stress and pore prepressure distribution around a pressurized, cooled crack in holw permeability rock, Proceedings of the Thirty-Second Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, January 22-24, SGP-TR-183
[34] Youssef H.M., 2007, Theory of generalized porothermoelasticity, International Journal of Rock Mechanics & Mining Sciences 44: 222-227.
[35] Jourine S., Valkoo P.P., Kronenberg A.K., 2004, Modelling poroelastic hollow cylinder experiments with realistic boundary conditions, International Journal for Numerical and Analytical Methods in Geomechanics 28: 1189-1205 (DOI: 10.1002/nag.383).