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 ABSTRACT 

 In this paper, the general solution of steady-state two-dimensional non-axisymmetric mechanical 
and thermal stresses and mechanical displacements of a hollow thick cylinder made of fluid-
saturated functionally graded porous material (FGPM) is presented. The general form of thermal 
and mechanical boundary conditions is considered on the inside and outside surfaces. A direct 
method is used to solve the heat conduction equation and the non-homogenous system of partial 
differential Navier equations, using the Complex Fourier Series and the power law functions 
method. The material properties, except of Poisson's ratio, are assumed to depend on the radial 
variable r and they are expressed as power law functions. 
                                                                                  © 2011 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 UNCTIONALLY graded materials (FGMs) are heterogeneous materials in which the elastic and thermal 
properties change from one surface to the other, gradually and continuously .The material is constructed by 

smoothly changing materials. Since ceramic has good heat resistance and metal has high strength, ceramic-Metal 
FGM may work at super high-temperatures or under high-temperatures difference field. In effect, the governing 
equation for the temperature and stress distributions are coordinate dependent as the material properties are 
functions of position. Classical method of analysis is to combine the equilibrium equations with the stress-strain and 
strain-displacement relations to arrive at the governing equation in terms of the displacement components called the 
Navier equation. There are some analytical thermal and stress calculations for functionally graded material in the on-
dimensional case for thick cylinders and spheres [1, 2] the authors have considered the non-homogeneous material 
properties as liner function of r. 

Jabbari et al.[3] studied a general solution for mechanical and thermal stresses in a functionally graded hollow 
cylinder due to non-axisymmetric steady-state load They applied separation of variables and Complex Fourier 
Series to solve the heat conduction and Navier equation. Poultangari et al.[4]presented Functionally graded hollow 
spheres under non-axisymmetric thermo-mechanical loads. Shariyat et al. [5] presented nonlinear transient thermal 
stress and elastic wave propagation analyses of thick temperature-dependent FGM cylinders, using a second-order 
point-collocation method. Lü Chen and Lim [6] presented elastic mechanical behavior of nano-scaled FGM films 
incorporating surface energies. Afsar, Sekine [7] presented inverse problems of material distributions for prescribed 
apparent fracture toughness in FGM coatings around a circular hole in infinite elastic media. Da-Guang Zhang, 
You-He Zhou [8] presented a theoretical analysis of FGM thin plates based on physical neutral surface. Fazelzadeh 
and Hosseini [9] presented aerothermoelastic behavior of supersonic rotating thin-walled beams made of 
functionally graded materials. Ootao and Tanigawa [10] presented the transient thermo elastic problem of 
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functionally graded thick strip due to non-uniform heat supply. They obtained the exact solution for the two-
dimensional temperature change in a transient state, and thermal stresses of a simple supported strip under the state 
of plane strain. Jabbari et al. [11] presented studied the mechanical and thermal stresses in functionally graded 
hollow cylinder due to radial symmetric loads. They assumed the temperature distribution to be a function of radial 
direction. They applied a method to solve the heat conduction and Navier equations. Farid et al. [12] presented 
three-dimensional temperature dependent free vibration analysis of functionally graded material curved panels 
resting on two-parameter elastic foundation using a hybrid semi-analytic, differential quadrature method. Bagri and 
Eslami [13] presented generalized coupled thermo elasticity of functionally graded annular disk considering the 
Lord–Shulman theory. Samsam et al. [14] presented buckling of thick functionally graded plates under mechanical 
and thermal loads. Jabbari et al [15] studied an axisymmetric mechanical and thermal stresses in thick short length 
functionally graded material cylinder. They applied separation of variables and Complex Fourier series to solve the 
heat conduction and Navier equation. Thieme et al. [16] presented Titanium powder sintering for preparation of a 
porous FGM destined as a skeletal replacement implant. 

Poroelasticity is a theory that models the interaction of deformation and fluid flow in a fluid-saturated porous 
medium. The deformation of the medium influences the flow of the fluid and vice versa .The theory was proposed 
by Biot [17, 18] as a theoretical extension of soil consolidation models developed to calculate the settlement of 
structurdes placed on fluid-saturated porous soils. The historical development of the theory is sketched by Boer 
[19]. The theory has been widely applied to geotechnical problems beyond soil consolidation, most notable 
problems in rock mechanics. Detournay and Cheng [20] surveyed both these methods with special attention to rock 
mechanics. These include familiar analytical methods (displacement potentials, method of singularities) and 
computational methods (finite element and boundary element). Sandhu and Wilson [21] studied the application of 
finite element techniques to poroelasticity. Detournay and Cheng [22] presented fundamentals of poroelasticity. 
Abousleiman and Ekbote [23] presented the analytical solutions for inclining hollow cylinder in a transversely 
isotropic material subjected to thermal and stress perturbations, and they systematically evaluated the effect of the 
anisotropy of the poromechanical material parameters as well as thermal material properties on stress and porous 
pressure distributions. Chen [24] presented analyzed the problems of linear thermo elasticity in a transversely 
isotropic hollow cylinder of finite length by a direct power series approximation through the application of the 
Lanczos-Chebyshev method. Bai [25] presented then derived an analytical method solving the responses of a 
saturated porous media subjected to cyclic thermal loading by the Laplace transform and the Gauss-Lengender 
method of Laplace transform inversion. Wang and Papamichos [26, 27] presented analytical solution for the 
temperature, pore pressure and stresses around a cylindrical well bored and a spherical cavity subjected to a 
constant fluid flow rate by coupling the conductive heat transfer with the pore-fluid flow. Ghassemi and Tao [28] 
presented influence of coupled chemo-poro-thermoelastic processes on pore pressure and stress distributions around 
a wellbore in swelling shale. Beneikt and sobey [29] presented an-axisymmetric and fully 3-D poroelasticmodel 
forth evolution of hydrocephalus. Yang and Zhang [30] presented poroelastic wave equation including the Biot 
/squirt mechanism and the solid/fluid coupling anisotropy .Arora and Tomar [31] presented the elastic waves along 
a cylindrical borehole in a poroelastic medium saturated by two immiscible fluids. Hamiel [32] presented the 
coupled evolution of damage and porosity in poroelastic media theory and applications to deformation of porous 
rocks. Ghassemi [33] presented stress and pore pre pressure distribution around a pressurized, cooled crack in 
hollow permeability rock. Youssef [34] theory of generalized porothermoelasticity presented. Jourine et.al [35] 
presented Modeling poroelastic hollow cylinder experiments with realistic boundary conditions. 

In this work, an analytical method is presented for mechanical and thermal stress analysis for a hollow cylinder 
made of fluid saturated porous functionally graded materials. Temperature distribution is considered in steady state 
non-axisymmetric case and mechanical and thermal boundary conditions are considered in general forms. At the 
end, the effects of graded changing and porosity are investigated on stresses.  

2    EQUATIONS 

2.1 Heat conduction problem 

Consider a hollow circular cylinder of inner radius and outer radius made of FGPM (Functionally Graded Porous 
Material), respectively. Non axisymmtric cylindrical coordinates ( , )r   are considered along the radial and 
circumferential direction, respectively. The cylinder’s material graded through the r-direction. Thus, the material 
properties are porous and functions r. The first law of thermodynamics for energy equation in the steady-state 
condition for the FGPM two dimensional cylinders is [3] 
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where ( , )T r   is temperature distribution, ( )k r  is the thermal conduction coefficient. The thermal boundary are 
assumed as: 
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where ijS  are the constant thermal parameters related to conduction and  convection coefficients. The functions  

1( )f   and 2 ( )f   are known as the inner and outer radii, respectively. We assume that non-homogeneous thermal 

conduction coefficient ( )k r  is power function of r as 3
0( ) .mk r k r= Using the definition for the material properties, 

the temperature equation becomes: 
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The solution of Eq. (3) is written in the form of Complex Fourier Series, as [3] 
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Substituting Eq. (4) into Eq. (3), the following equation is obtained 
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Eq. (6) is the Euler equation and has solutions in the form of [3] 
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Substituting Eq. (6) into Eq. (5), the following characteristic equation is obtained: 
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Thus: 
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The constants 1nA  and 2nA are presented at Appendix B. 

2.2 Stress analysis 

Let u and v be displacement components in the radial and circumferential directions, respectively. Then, strain-
displacement relations are [3] 
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Stress-strain relations of a FGPM cylinder for non-axisymmtric condition are [3] 
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where ,ij ij ( , , )i j r = , ijC , M ,  , , and   are stress tensor, strain tensor, elastic constant, Biot’s modulus, 

Biot’s coefficient  of effective stress, thermal expansion coefficient and Lame’s coefficient, respectively. 
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where: 
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The equilibrium equations in the radial and circumferential direction, disregarding the body force and the inertia 

terms are 
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To obtain the equilibrium equations in terms of the displacement components for the FGPM cylinder, the 

functional relationship of the material properties must be known. Because the cylinder material is assumed to be 
graded along the r-direction, the modulus of elasticity and coefficient of thermal expansion are assumed to be 
described with the power laws as  
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where the coefficients are described as: 
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and a is the inner radius. Using the relations (11) to (20) the Navier equations in terms of the displacement 
components are: 
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The Naviear Eqs. (21) are non-homogeneous system of partial differential equations with non-constant 

coefficients. For simplicity of analysis, we consider the power law of material properties to be the same as 
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Substituting Eq. (11) and Eq. (22) into Eqs. (21) yield: 
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Eqs. (23) are system ordinary differential equation having general and particular solution. The general solution 

are assumed as 
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Substituting Eqs. (24) into Eqs. ( 23 ) yields: 
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A nontrivial solution is obtained by setting the determinant of the coefficients of Eqs. (25) equal to zero, a four 

order polynomial characteristic equations is obtained and it gives four eigen values 1n  to 4 .n  
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Thus, the general solutions are 
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where njN  is the relation between constant njD  and njE  is obtained from the of Eqs. (25) and they are presented at 

Appendix - part A. The particular solutions ( )p
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Substituting Eqs. (27) to non-homogeneous form of Eqs. (23) gives 1nI  to 4nI  as they are presented at Appendix 

–part A. The complete solutions for ( )nu r  and ( )nv r  are the sum of the general and particular solutions and are 
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For 0n =  the coefficient njN  is undefined because the system of Eqs. (23 ) for 0n =  is two decoupled ordinary 

differential equations as  
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This is the system of Euler differential equations. Thus, the solution of homogeneous part of Eqs. (30) may be 

assumed in the form  
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Thus, the general solution is: 
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Substituting Eqs.(29) and (35) into Eqs.( 22) give  
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¥
+ + + + + +

= =-¥ =
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¥
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= =-¥ =
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é ù
ê ú= + + + +ê ú
ê úë û

é ù
ê ú= + + +ê ú
ê úë û

å å å

å å å
 (34)

 

 
Substituting Eqs. (34) into Eqs. (11) the strains intensity are obtained as  
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 (35) 
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Substituting Eqs. (35) into Eqs. (16) the stresses are obtained as 
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 (36) 
 
where 

 

12 12
1 2

11 22 11 22 66

, , , , rrr
rr r

C C
H H

C C C C C
 

 

 
  ¢ ¢ ¢= = = = =  (37)

 

 
To determine the constants ,njD  we may consider any general form of boundary for displacement and stresses as 

 

1 5

2 6

3 7

4 8

( , ) ( ) ( , ) ( )

( , ) ( ) ( , ) ( )

( , ) ( ) ( , ) ( )

( , ) ( ) ( , ) ( )

rr

rr

r

r

u a w a w

u b w b w

v a w a w

v b w b w





    

    

    

    

= =

= =

= =

= =

 (38)

 
Expanding the given boundary conditions in complex Fourier series gives 
 

( ) ( ) e , 1,..., 4in
j j

n

w W n j
¥

=-¥

= =å  (39)

 
where 

 
1

( ) ( ) e d , 1,..., 4
2

in
j jW n w n j







 -
= =ò  (40)

 
Using the selected six boundary conditions of Eqs. (38) with help of Eqs. (39) and (40) four unknown 

coefficients 1nD  to 4nD  are calculated. 
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3    RESULTS AND DISCUSSION 

Consider a thick hollow cylinder of inner radius 1(m)a =  and outer radius 1.2(m)b =  shown properties are given 

in Table 1. For simplicity of analysis, we consider the power law of material properties be the same as 

1 2 3 4 .m m m m m= = = =  To examine the proposed solution method, two example problems are considered. The 

first example problem may have some physical interpretation, while the second example is chosen to show the 
mathematical effectiveness of the proposed method .The first example problem may have some physical 
interpretation, while the second example is chosen to show the mathematical effective of the proposed method. As 
the first example, consider a thick hollow cylinder where the inside boundary is traction –free with given 
temperature distribution of the Table1.The outside boundary is assumed to be radially fixed with zero temperature. 
Therefore, the assumed boundary conditions yield of the Table 1. The thermal boundary conditions are obtained and 
the temperature is distributed, where the constants of integration are obtained from in Appendix –part B. In general, 
the displacement and stress boundary conditions are substituted in Eqs. (34) and with proper function expansions 
(35) the constant coefficients of the series expansions are obtained from Eqs. (36). B is compressibility coefficient, 
sometimes called the Skempton pore pressure coefficient and   is pore volume fraction is pore per unite total 

volume, respectively, are given in Appendix – part B. To examine the proposed solution method two example 
problems are considered.  

The first example problem may have some physical interpretation, while the second example is chosen to show 
the mathematical effectiveness of the proposed method. As the first example, consider a thick hollow cylinder 
where the inside boundary is traction –free with given temperature distribution of the Table 2.The outside boundary 
is assumed to be radially fixed with zero temperature. Therefore, the assumed boundary conditions yield of the 
Table 2. 

As the second example, a thick-walled cylinder may be assumed with zero temperature distribution and but 
exposed to mechanical boundary conditions. The stress and displacement boundary conditions are assumed of the 
Table3.The reason to select such boundary condition is to examine the mathematical strength of proposed method. 
These types of boundary conditions may not be handled with the potential function method. It is to examined that 
expansion of Eq. (36) rapidly converge after 31 number of terms .Therefore, in the calculation and plotting the 
Figures, 31 terms of each series are considered. Using Eqs. (34) to (36) the boundary conditions given in radial 
stress and electric potential in Table 3 are expanded by the integral series and the unknown coefficients Dnj are 
determined. Fig. 1 shows the temperature distribution in the wall thickness along the radius and circumferential 
directions. The effect of the power-law index on the distribution of the temperature radial is shown in Figs. 2 and 3 
shows the resulting thermoelastic radial displacement due to the given temperature variations. The effect of the 
power-law index on the radial displacement versus r/a is shown in Fig. 4. 
 
 
Table 1 
Material property [3] 

 E (GPa)      u  
0 (1 / c)   

Material 1 200 0.47 0.2 0.3 0.000012 
 
 
Table 2 
Boundary conditions 

( , )T a   ( , )rr a   ( , )r a   ( , )u b   ( , )v b   

60sin(2 ) ( c)   0 0 0 0 

 
 
Table 3 
Boundary conditions 

( , )T a   ( , )T b   ( , )rr a   ( , )r a   ( , )u b   ( , )v b   

0 0 
2

200cos (MPa)
4

 
æ ö÷ç ÷ç - ÷ç ÷ç ÷÷çè ø

 250 sin( ) (MPa)   0 0 
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The resulting circumferential displacement v is shown in Fig. 5. Due to the assumed boundary conditions, it is 
noted that, the u and v-displacement are zero at rb and follow the pattern of the temperature distribution inside 
surface at r/a1. The effect of the power-law index on the circumferential displacement relate of r/a is shown in 
Figs. 6, 7, 9 and 11 show the of the radial, circumferential, and, the shear thermal stress in the cross section of the 
cylinder. It is interesting to see that all components of stresses follow a harmonic pattern on the outside surface .The 
radial and shear stresses are zero at the insider surface, due to the assumed boundary conditions. The effect of the 
power-law index on the distribution of the radial, Hoop and Shear thermal stress is shown in Figs.8, 10 and 12 
respectively. This Figure is the plot of stresses versus r/a at / 3. =  It is shown as m increases, the radial, hoop 
and shear thermal stress is increased. Figs. 13, 15 and 17 show the radial, hoop and shear thermal stresses in the 
cross section of the cylinder respectively where the pore compressibility coefficient (B) is changed the other 
parameters are fixed. Figs. 14, 16 and 18 show these stresses based on the pore volume fraction ( )  is pore volume 

per total volume. Figs. 19 and 21 show the radial and circumferential displacements in the cross section of the 
cylinder respectively based on the pore compressibility coefficient (B) changing. Figs. 20 and 22 also show these 
displacement based on the pore volume fraction ( )  changing. Figs. 23 and 25 show the radial and circumferential 

displacements in the cross section of the cylinder. 
According to the boundary conditions, we have uv0 at rb. At the inside surface ra, u and v are harmonically 

varying. The effect of the power-law index on the radial and circumferential displacement relate of r/a is shown in 
Figs. 24 and 26. The stress distribution is shown in Figs. 27, 29 and 31. Stress patterns in inside and outside surfaces 
follow harmonic patterns. The given harmonic boundary conditions for rr  and r  at ra, have general influence 

on the pattern of stress distributions in the cylinders cross section, as seen from Figs. 27 through 31. The effect of 
the power-law index on the distribution of the radial, hoop and shear thermal stress is shown in Figs. 28, 30 and 32, 
respectively. This Figure is the plot of stresses versus r/a at   / 3.=  It is shown that as m increases, the radial, 
hoop and shear thermal stress is increased. Figs 33, 35, and 37 show the radial, hoop and shear thermal stresses in 
the cross section of the cylinder respectively where the pore compressibility coefficient (B) is changed the other 
parameters are fixed. Figs. 34, 36, and 38 show these stresses based on the pore volume fraction ( )  is pore volume 

per total volume. Figs.39 and 41 show the variations of the radial and circumferential displacements in the cross 
section of the cylinder respectively based on the pore compressibility coefficient (B) changing. Figs .40 and 42 also 
show these displacements based on the pore volume fraction ( )  changing. 
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Fig. 1 
Temperature distribution in the cross section of cylindrical. 

 

Fig. 2 
Temperature distribution of radial at / 3. =  
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Fig. 3 
Radial displacement in the cross section of cylindrical. 
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Radial displacement relate of r/a at / 3. =  
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Fig. 5 
Circumferential displacement in the cross section of 
cylindrical. 
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Circumferential displacement relate of radial at / 3. =  
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Fig. 7 
Radial thermal stress in the cross section of cylindrical. 
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Fig. 8 
Radial distribution of radial thermal stress rr  at / 3. =  
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Fig. 9 
Hoop thermal stress in the cross section of cylindrical. 

   

   

 

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
-150

-100

-50

0

50

100

150

r(m)




 (
M

p
a
)

 

 

m = 1

m = 0

m = -1

 
 
 

Fig. 10 
Hoop distribution of radial thermal stress   at / 3. =  
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Fig. 11 
Shear thermal stress in the cross section of cylindrical. 
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Fig. 12 
Shear distribution of radial thermal stress r  at / 3. =  
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Fig. 13 
Radial thermal stress in the cross section of cylindrical based 
on the compressibility coefficient (B) changing. 
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Fig. 14 
Radial thermal stress in the cross section of cylindrical based 
on the pore volume fraction ( )  changing. 
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Fig. 15 
Hoop thermal stress in the cross section of cylindrical based on 
the compressibility coefficient (B) changing. 
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Fig.16 
Hoop thermal stress in the cross section of cylindrical based on 
the pore volume fraction ( )  changing. 
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Fig. 17 
Shear thermal stress in the cross section of cylindrical based on 
the compressibility coefficient (B) changing. 
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Fig. 18 
Shear thermal stress in the cross section of cylindrical based on 
the pore volume fraction ( )  changing. 



Mechanical and Thermal Stresses in a FGPM Hollow Cylinder Due to Non-Axisymmetric Loads                   33 
 

© 2011 IAU, Arak Branch 

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

-3

r(m)

U
 (
m
)

 

 

B=0.85

B=0.65

B=0.5

Fig. 19 
Radial displacement in the cross section of cylindrical based on 
the compressibility coefficient (B) changing. 
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Fig. 20 
Radial displacement in the cross section of cylindrical based on 
the pore volume fraction ( )  changing. 
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Fig. 21 
Circumferential displacement in the cross section of cylindrical 
based on the compressibility coefficient (B) changing. 

   
   
   

Fig. 22 
Circumferential displacement in the cross section of cylindrical 
based on the pore volume fraction ( )  changing. 
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Fig. 23 
Radial displacement in the cross section of cylindrical. 
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Fig. 24 
Radial displacement relate of r/a at  / 3. =  
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Fig. 25 
Circumferential displacement in the cross section of 
cylindrical. 
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Fig. 26 
Circumferential displacement relate of radial at / 3. =  
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Fig.27 
Radial thermal stress in the cross section of cylindrical. 
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Fig.28 
Radial distribution of radial thermal stress rr  at / 3. =  
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Fig.29 
Hoop thermal stress in the cross section of cylindrical. 

   
   

Fig.30 
Hoop distribution of radial thermal stress   at / 3. =  
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Fig. 31 
Shear thermal stress in the cross section of cylindrical. 
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Radial thermal stress in the cross section of cylindrical based 
on the compressibility coefficient (B) changing. 
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Fig. 34 
Radial thermal stress in the cross section of cylindrical based 
on the pore volume fraction ( )  changing. 
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Fig. 35 
Hoop thermal stress in the cross section of cylindrical based on 
the compressibility coefficient (B) changing. 
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Fig. 36 
Hoop thermal stress in the cross section of cylindrical based on 
the pore volume fraction ( )  changing. 
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Fig. 37 
Shear thermal stress in the cross section of cylindrical based on 
the compressibility coefficient (B) changing. 
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Fig. 38 
Shear thermal stress in the cross section of cylindrical based on 
the pore volume fraction ( )  changing. 
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Radial displacement in the cross section of cylindrical based on 
the compressibility coefficient (B) changing. 
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Radial displacement in the cross section of cylindrical based on 
the pore volume fraction ( )  changing. 
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Fig. 41 
Circumferential displacement in the cross section of cylindrical 
based on the compressibility coefficient (B) changing. 
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Fig. 42 
Circumferential displacement in the cross section of cylindrical 
based on the pore volume fraction ( )  changing. 
 

4    CONCLUSIONS 

In the present, work an attempt has been made to study the problem of general solution for the thermal and 
mechanical stresses in a thick FGPM hollow cylinder due to the two-dimensional non-axissymmmetric steady-state 
loads. The method of solution is based on the direct method and uses power series, rather than the potential function 
method. The advantage of this method is its mathematical power to handle both simple and complicated 
mathematical function for the thermal and mechanical stresses boundary conditions. The potential function method 
is capable of handling complicated mathematical functions as boundary condition. The proposed method does not 
have the mathematical limitations to handle the general types of boundary conditions which are usually countered in 
the potential function method. 
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where fk  and k are bulk modulus of the fluid phase and bulk modulus of the poroelastic medium under the drained 

condition, respectively. 
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