Bending Analysis of Multi-Layered Graphene Sheets Under Combined Non-Uniform Shear and Normal Tractions
Subject Areas : Engineering
1 - Department of Mechanical Engineering, University of Mazandaran, Babolsar, Iran
2 - Mechanical Engineering Department, Faculty of Engineering, Bu-Ali Sina University, Hamadan, Iran
Keywords:
Abstract :
[1] Chang W. J., Lee H. L., 2014, Mass detection using a double-layer circular graphene-based nanomechanical resonator, Journal of Applied Physics 116(3): 034303.
[2] Gheshlaghi B., Hasheminejad S. M., 2013, Size dependent damping in axisymmetric vibrations of circular nanoplates, Thin Solid Films 537: 212-216.
[3] Gibson R. F., Ayorinde E. O., Wen Y. F., 2007, Vibrations of carbon nanotubes and their composites: A review, Composites Science and Technology 67(1): 1-28.
[4] Behfar K., Naghdabadi R., 2005, Nanoscale vibrational analysis of a multi-layered graphene sheet embedded in an elastic medium, Composites Science and Technology 65(7-8): 1159-1164.
[5] Behfar K., Seifi P., Naghdabadi R., Ghanbari J., 2006, An analytical approach to determination of bending modulus of a multi-layered graphene sheet, Thin Solid Films 496(2): 475-480.
[6] Eringen A. C., 1983, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics 54(9): 4703.
[7] Rafiee R., Moghadam R. M., 2014, On the modeling of carbon nanotubes : A critical review, Composites Part B 56: 435-449.
[8] Eringen A. C., 2002, Nonlocal Continuum Field Theories, Springer.
[9] Lim C. W., 2010, On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: equilibrium, governing equation and static deflection, Applied Mathematics and Mechanics 31(1):37-54.
[10] Babaei H., Shahidi A. R., 2011, Vibration of quadrilateral embedded multilayered graphene sheets based on nonlocal continuum models using the Galerkin method, Acta Mechanica Sinica 27: 967-976.
[11] Duan W. H., Wang C. M., 2007, Exact solutions for axisymmetric bending of micro/nanoscale circular plates based on nonlocal plate theory, Nanotechnology 18: 385704.
[12] Lim C. W., Li C., Yu J. L., 2012, Free torsional vibration of nanotubes based on nonlocal stress theory, Journal of Sound and Vibration 331(12): 2798-2808.
[13] Murmu T., Pradhan S. C., 2009, Small-scale effect on the free in-plane vibration of nanoplates by nonlocal continuum model, Physica E: Low-Dimensional Systems and Nanostructures 41(8):1628-1633.
[14] Pradhan S. C., Phadikar J. K., 2009, Nonlocal elasticity theory for vibration of nanoplates, Journal of Sound and Vibration 325: 206-223.
[15] Radić N., Jeremić D., Trifković S., Milutinović M., 2014, Buckling analysis of double-orthotropic nanoplates embedded in Pasternak elastic medium using nonlocal elasticity theory, Composites Part B 61: 162-171.
[16] Zenkour A. M., Sobhy M., 2013, Nonlocal elasticity theory for thermal buckling of nanoplates lying on Winkler–Pasternak elastic substrate medium, Physica E: Low-Dimensional Systems and Nanostructures 53: 251-259.
[17] Wang Y. Z., Li F. M., 2012, Static bending behaviors of nanoplate embedded in elastic matrix with small scale effects, Mechanics Research Communications 41: 44-48
[18] Narendar S., Gopalakrishnan S., 2011, Scale effects on buckling analysis of orthotropic nanoplates based on nonlocal two-variable refined plate theory, Acta Mechanica 223(2):395-413.
[19] Bedroud M., Nazemnezhad R., 2015, Axisymmetric / asymmetric buckling of functionally graded circular / annular Mindlin nanoplates via nonlocal elasticity, Physica E: Low-Dimensional Systems and Nanostructures 43(10):1820-1825.
[20] Farajpour A., Danesh M., Mohammadi M., 2011, Buckling analysis of variable thickness nanoplates using nonlocal continuum mechanics, Physica E: Low-Dimensional Systems and Nanostructures 44(3): 719-727.
[21] Malekzadeh P., Farajpour A., 2012, Axisymmetric free and forced vibrations of initially stressed circular nanoplates embedded in an elastic medium, Acta Mechanica 223(11): 2311-2330.
[22] Bedroud M., Hosseini-Hashemi S., Nazemnezhad R., 2013, Buckling of circular/annular Mindlin nanoplates via nonlocal elasticity, Acta Mechanica 224(11): 2663-2676.
[23] Bedroud M., Nazemnezhad R., 2015, Axisymmetric / asymmetric buckling of functionally graded circular / annular Mindlin nanoplates via nonlocal elasticity, Meccanica 50:1791-1806.
[24] Shaban M., Alibeigloo A., 2014, Static analysis of carbon nano-tubes based on shell model by using three-dimensional theory of elasticity, Journal of Computational and Theoretical Nanoscience 11: 1954-1961.
[25] Shaban M., Alibeigloo A., 2014, Three dimensional vibration and bending analysis of carbon nano- tubes embedded in elastic medium based on theory of elasticity, Latin American Journal of Solids and Structures 11: 2122-2140.
[26] Shaban M., Alipour M. M., 2011, Semi-analytical solution for free vibration of thick functionally graded plates rested on elastic foundation with elastically restrained edge, Acta Mechanica Sinica 24(4): 340-354.
[27] Alipour M. M., Shariyat M., Shaban M., 2010, A semi-snalytical solution for free vibration and modal stress analyses of circular plates resting on two-parameter elastic foundations, Journal of Solid Mechechanics 2(1): 63-78.
[28] Alipour M. M., Shariyat M., 2010, Stress analysis of two-directional FGM moderately thick constrained circular plates with non-uniform load and substrate stiffness distributions, Journal of Solid Mechechanics 2(4): 316-331.
[29] Alipour M. M., Shariyat M., 2011, A power series solution for free vibration of variable thickness mindlin circular plates with two-directional material heterogeneity and elastic foundations, Journal of Solid Mechechanics 3(2): 183-197.
[30] Saidi A. R., Rasouli A., Sahraee S., 2009, Axisymmetric bending and buckling analysis of thick functionally graded circular plates using unconstrained third-order shear deformation plate theory, Composite Structures 89(1):110-119.