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ABSTRACT
Bending analysis of multilayer graphene sheets (MLGSs) subjected to non-uniform
shear and normal tractions is presented. The constitutive relations are considered to be
non-classical based on nonlocal theory of elasticity. Based on the differential
transformation method, numerical illustrations are carried out for circular and annular
geometries. The effects of nano scale parameter, radius of circular and annular
graphene sheet, number of layers as well as distance between layers in the presence of
van der Waals interaction forces are investigated. In addition, the effects of different
boundary conditions are also examined. The numerical results show that above
mentioned parameters have significant effects on the bending behavior of MLGSs
under the action of non-uniform shear and normal tractions.
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1 INTRODUCTION

RAPHENE sheets are adjacent nano-plates consisting of monolayer graphite. Due to their honeycomb lattice

structure, multi layer graphene sheets has extraordinary and distinctive mechanical and electrical properties that
make them valuable in a wide variety of applications in micro and nano-electromechanical systems (MEMS and
NEMS) and large amount of research has been dedicated to their applications such as biotechnology, nano-
mechanical resonator, etc ([1]-[2]). In the past decade, there are considerable researches focused on the behavior of
nano structures by using conventional theories ([3]-[5]). These theories cannot capture intrinsic size-dependence
properties of nanostructures. In order to overcome this problem, some scale-based theories such as Cosserat theory,
couple stress theory and nonlocal theory are presented. Nonlocal theory is one of the familiar continuum models that
includes intrinsic size-dependence in its constitutive equation [6] and great deal of attentions has been devoted to
this theory ([7]). This theory has more accuracy compared with experimental results ([8]-[9]). Babaei and Shahidi
[10] concerned quadrilateral multi-layered grapheme sheets with simply supported edge conditions. They studied the
free vibration behavior of MLGS by using nonlocal theory and showed that number of layer affected the higher
modes. Duan and Wang [11] investigated the bending of circular micro and nano-plate. They used variable
transformation technique to solve the nonlocal equations. They obtained that considering the nonlocal parameter
leads to larger deflections. Lim et al. [12] investigated tortional vibration of nanotubes by considering axial moving
of them. They derived their equations by considering history of nonlinear straining with reference to an undeformed
state. Murmu and Pradhan [13] studied effect of nonlocal parameter on the free in-plate vibration of nano-plates. In
the other work, Pradhan and Phadikar [14] used nonlocal classical and first order plate theory to analyze vibration of
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single and double layer nano-plates. They showed that effect of nonlocal theory becomes more significant when the
size of the plate become small. Bi-axial buckling of double-orthotropic nano-plates was investigated by Radic¢ et al.
[15]. They focused on the effect of surrounding elastic medium and obtained that considering the elastic medium
significantly reduces the impact of small scale effect. Zenkour and Sobhy [16] considered thermal buckling of single
layered graphene sheets by using nonlocal sinusoidal shear deformation plate theory. They obtained that results
obtained from shear deformation theory are more reliable than those obtained from classical plate theory. Wang and
Li [17] studied the bending behavior of single layer rectangular nano-plate by using CPT and FSDT. They presented
analytical formulations for simply-supported nano-plates. Narendar and Gopalakrishnan [18] extended nonlocal
two-variable refined plate theory to investigate the buckling behavior of orthotropic nano-plate. They showed that
buckling load of orthotropic nano-plate is always smaller than that of an isotropic nano-plate.

Farajpour et al. [19] investigated the buckling behavior of circular single-layered graphene sheets (SLGS) under
uniform radial compression by using nonlocal elasticity theory. In other work, they considered non-uniformity in
the thickness of nano-plate and showed that buckling behavior of SLGS is sensitive to this parameter [20]. Also,
Malekzadeh and Farajpour [21] studied axisymmetric vibrations of circular nanoplates under initial in-plane radial
stresses by employing Galerkin method. The effects of nonlocal parameter, elastic foundation and initial radial
stresses on the natural frequency of the circular nanoplates are investigated by them. Bedroud et al. [22]-[23]
presented an analytical solution for buckling analysis of both homogeneous and functionally graded circular/annular
Mindlin nanoplates under uniform radial compressive in-plane load.

In other work, Shaban and Alibeigloo[24]-[26] investigated bending and free vibration behavior of single-walled
carbon nano-tubes (SWCNTs) based on three-dimensional theory of elasticity. Surveying available literature reveals
that up to now no research has been made to study the bending behavior of multilayer graphene sheets (MLGSs)
with various boundary conditions and this research attempt to consider this. Furthermore, in the present research, a
more general load consists of non-uniform shear and normal tractions are considered. A semi-analytical method
based on the differential transform method (DTM) which is successfully used in previous works to determine
stresses distribution and natural frequencies of two-directional functionally graded plates ([27]-[29]) is developed
in this work to solve the governing equations of MLGSs. In the present study, effects of the van der Wall (vdW)
interaction forces between layers are also included in the formulations and influences of these forces are discussed.

2 GOVERNING EQUATIONS

Consider an annular multilayer graphene sheets with outer radius R,, inner radius R; and thickness 4 and vdW
interaction force field as shown schematically in Fig. 1. For each layer, the Mindlin’s plate theory based on the
following assumed displacement field

u(r,z,t) =uy (r,t) +zy, (r,1) w(r, z,t) = wy (r,1) )

where uy, vy, and w, are the radial, circumferential, and transverse displacement components of the mid-surface of
the circular plate, respectively. y, is shear rotation of the normal to the middle surface with respect to the radial

direction. The strain—displacement equations of linear elasticity are as follow

u_Ow Oy, . _u_utzy, . _ow_, ~_ou ow_ = Ow
" or or o "0y r TR b » Ve oz oOr Vi or @

In the nonlocal theory, unlike the stress tensor at a reference point in a continuum body depends not only on the
strain tensor at that point, but also on the strain tensor of other points. Constitutive model that expresses the nonlocal
stress tensor is as follow

(1 —sz )O'ii = tij = Cji€u (3)

w is the nonlocal parameter, o; is the nonlocal stress tensor, #;; is the local (classical) stress tensor, ¢, is the
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14 Bending Analysis of Multi-Layered Graphene Sheets....

fourth-order elasticity tensor and ¢; is the local (classical) strain tensor. According to Eq. (2) the constitutive

relations for circular and annular nano-plate are given by

(1—,uV2)Ur = (&, +vsy)

(1—,uv2)09 =1 (&g +Vve,) @
(l—yvz)az =0

(1-49%)o =7 2(1b;v)

«° denotes the transverse shear correction factor. The stress and moment resultants per unit length defined as
below:

N hi2 1 hi2
= Lol 0= e
M z
of —h/2 —h/2

By substituting Egs. (2) into Egs (4) and (5), the following equations can be derived for each layer

(l —uv? )Nr(i) = A(u(()i)r +Ku6i)j (l//(l) +— l,z/r(’)j
’ r
2 i ”(i) ‘//
(1-aV? )N = 4| 2 svail) |+ B] 2=+ v )
r r
(1-wv2)m? =B[u0,,+ﬂug>j+z>[m+ o) ©
Toor
, W) e
(1- v )M = B] 2+ vail) |+ D| 2 vy
r r
(1 — V2 )Qf") =K A(l//(’) +w(’))
where
Al w2 E 1 o
B =J. R dz,AzJ.21 dz 7)
p| inl7V 2 i 20+

Here, the principle of minimum total energy is used to derive the governing equations.
Al=0U-6W=0 ®)

where U and W are the strain energy and work of the externally applied loads, respectively. The variation of strain
energy and work of the externally applied loads are as follow,

oU = I (’)yg(’)+a(’)5g(’)+r(’)5yg))d1/,

SW = I [ G Dsw® + TO ()5 — C(Wm — D ) 5 (W(i) W) )_ C(w(i) _ (D) ) 5<W(i) _ (D) )J dA €))
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where T and P are shear and normal tractions applied to graphene sheets, respectively. 7 is the layer number and it
can be seen that each layer interacted by adjacent top and bottom layer. It is worthy to mention that vdW interaction
forces between layers are taken into consideration by utilizing springs with constant C. The 1* and »™ layers are
interacted only by their neighboring layer.

By using Eqgs. (1) and (2), Egs. (9) can be written as follow:

A Ny (s )
8U= [| NOSZ u0se Nom g0, Mo 5,0, s 0 O gy
or or r r or (10)

SW = ﬂq(i)éw(”) +T0(r)s (u((f) —gv/fi) ] -C (w(i) - )5 (w(i) —wi ) ) -C (w(i) —wi*D )5 (w(i) —w( )} dA

By substituting Eq. (10) into Eq. (8), using the theorem of integration by parts and collecting the coefficients of
§u(()i ),&//r(i ) and Sw?, three governing equations for i layer may be derived in the cylindrical coordinate system

(.0, z)

Ny NP Ny

=7
or r r ")
MmO MO My A
roy [ _Qfl) — ET(Z) (7‘)
or r r 2 an
o0® oW . . - . .
& +Q; — _q(l) + C(W(l) — (D ) n C(W(z) _ D )
or r
Considering Eqs. (6), one can obtain the governing Eqs. (11) in terms of displacement components
(0) (i) ® @)
Sug . Al ul). +£—ML2 +B[l//f’3r +ﬁ_‘/’;2 = —(1 - uv? )(T(l)(”))
’ ror ' r r
. 00 4 @ () - : 4
Sy, : Bluf) +2or M| plym (P Ve | 2g (p+ )= ﬁ(l - )(190) (12)
’ 7 ’ r r ’ 2
(@) ()

Sw: Kk°A y/f’g +y/f+w(") +w7r = (1 —;Nz )[—q(i)(r)+C(w(i) —w(i+l))+ C(w(i) — i )J

S
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Fig.1
Schematic of Multi layer graphene sheets.
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16 Bending Analysis of Multi-Layered Graphene Sheets....

3 SOLUTION PROCEDURE FOR SOLVING GOVERNING EQUATIONS

The set of governing equations are solved by using differential transformation method). The displacement
components (#y and wy) and radial rotation y, are analytic in our domain and can be represented by using Taylor

power series as follow:
u(()[) )= ZU,?) (r -7, )k w = z W,fi) (r -7, )k l//,@ = Z‘I’g) (r -7, )k (13)
k=0 k=0 k=0

In the above relations, Uf?, W(ki),‘l’g) are the transformed functions in DTM. In this study, non-uniform shear

and normal tractions are considered as follow

q(r)=c}|:a0+al (r—r,)+a, (r—r(,)z} T(r)=f[ﬂo+:31 (’”_”a)+ﬂ2(”_’”o)2} (14)

Substituting relations (13) into Egs. (12), one may obtain three transformed differential equations for governing
equations

N k+1 1 1+1 k 1 1+2
D14 (k+2)(k+1)U,(f+)2—Z(——J (k—1+1)U,§"’,H—Z(1+1)(——J up, |+
i=0 To

k=0 1=0 o

NV A k R (15)
B (k+2)(k+1)\}'§;12—2£——J (k=1+1D¥{,., —Z(Hl)[—r—] P,

=0 o i=0 o

k+1 k
~TOL(By ~2uB, ) 5k) + fS(k—1)+ pr5(k~2) |- 1TV | B, (—%] +25, (—l] (r=b) =0

o o

Notices that series expansion formulations provided below are used to obtain Egs. (15)

0 I+1 0 1+2
}=—Z[—}j ¢-1,) %=Z(l+1)[—}] 1) (16)
1=0 o I

-0 0

To find the solution of Eq. (15), it is required that the coefficient of terms with same powers is set equal to zero
and recurrence relations are founded. To obtain the coefficients ‘I’g), ‘I’gi), U(()i), Ul([), Wéi), Wl(i) boundary

conditions should be taken into account. Three types for boundary conditions and their transformed forms are given
in as follows.

Clamped (C):
) N+2 ) ) N+2 ) ) N+2 )
u) =D U= =0y = ¥ =0 W= W) =0 (17)
k=0 k=0 k=0
Simply supported (S):
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) N+2 )
uf) = D U (r=r,) =0
k=0
N+1 ) B . . D A
M, = Z[B(kuw,&’ll +=U +D(k+ )P, +—‘P§?}(r—ro)" =0 (18)
r r
k=0
) N+2 )
W(l) = ZVVk(l)(r—Vo)k =0
k=0

Free edge (F):

N+1
NO = Z{A(m DU, + éU}!) +Bk+ D)WY, + g‘i’%” }(r —r,) =0
pry
) N+1 ) B .. . D :
M = Z{B(k HDULL +—U + D+ DY, + =) }(’" -7,)" =0 (19)
=0
) N+1 . _ .
o = Z[KA‘Pg) +x Ak + ), ](r ) =0
=0

In the center of solid circular graphene sheets, the following conditions should be satisfied:

) N+2 ]
uf) =Y U (=r,) =0
k=0

) N+2 )
=Y ) <o @
k=0

N+1
o = Z[KZ‘PE? + KAk + 1)), J(_”u ) =0
=0

4 NUMERICAL RESULTS AND DISCUSSION

First, for comparison purposes, the present analysis was initially restricted and applied to the case of double layer
circular graphene sheets subjected uniformly normal traction g=0./4 MPa plates having Young’s modulus
E=0.396E., E.=15] Gpa and Poisson’s ratio v=0.288 and compared with the corresponding results in reference
[30]. C is vdW interaction constant between graphene layers. The non-dimensional deflection is defined as

3
W= 64D, w. D = L . As it is observed from Table 1., there is good agreement between the obtained results

qrt < 120-v%)
and previous researches. Moreover, from Table 1. one can observed that decreasing constant C, caused the
deflection of upper graphene layer to increased opposite to deflection of lower graphene layer. According to Table
1., one can see that if vdW constant, C, is significantly large, the springs become rigid and the deflection of two
layers be equal. But when this constant become very small, the deflection of first layer has no effect on the
deflection of second adjacent layer. In the remaining parts of this study, the material and geometrical properties are
assumed as follow: Young modulus E=2.99 TPa, thickness h=0.34 nm, g=100 MPa, Poisson’s ratio v=0.397.

i

Table 2. shows the dimensionless central deflection (12/( ) = w(') / h') of a simply supported double layer circular
graphene sheets under uniformly normal traction for different values of nonlocal parameter, vdW interaction
constant and outer radius. Similar results presented in Table 3. for double layer fully clamped circular graphene
sheets. From these tables, one can observed that irrespective of other parameters, by increasing the nonlocal

parameter, u, the central deflection of first layer, ) will be decreased. In contrast, the central deflection of second
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18 Bending Analysis of Multi-Layered Graphene Sheets....

layer, v?/(z) will be increased. Furthermore, it can be observed that v?/(l) contrary to v?z(z) decreased when the vdlW
constant, C, increased. For double layer graphene sheets with larger diameters, however, it is seen from Tables 2.
and 3 that both central deflections get almost larger. Also, considering edge condition, the central deflections in
clamped circular graphene sheets are always smaller that those with simply supported edge condition.

Table 1
Comparison of dimensionless central deflection, w for the double layer circular nano-plate.
C
B.C T Ref [30]
10" 10° 10° 10°
wh 1.320 1.565 2.635 2.640 2.639
0.1
w® 1.320 1.075 0.005 5.110x10™"*
Clamp
wh 1.494 2.442 2.984 2.985 2.979
0.2 w@ 1.491 0.543 0.0008 8.321x10™"
wh 5.241 5.507 10.401 10.482 10.481
Simply 0.1 @ 5.241 4.976 0.0808 8.207x10™"!
Support wh 5.415 7.158 10.816 10.827 10.822
0.2 w@ 5412 3.669 0.011 1.010x10™"
Table 2
Central dimensionless deflection of simply supported double layer circular nano-plate under uniformly distributed loading.
u r=1Inm r=2nm r=5nm r = 10nm
(nm’) C=5x10" c=10" C=5x10" c=10" C=5x10" Cc=10"  Cc=5x10" c=10"

w 0.001739 0.001706 0.020780 0.018590 0.497578 0.488279 7.66279  7.65541

0 w@ 3.43x107 6.62x107 0.004638 0.006827 0.463039 0.472338 7.63326  7.64071
. wh 0.001583 0.00146 0.017981 0.016005 0.495281 0.487626 7.66276  7.65541
w@ 0.000189 0.000313 0.007437 0.009412 0.465336 0.472991 7.63335  7.64071
5 wh 0.001475 0.001326 0.016615 0.014993 0.493340 0.486773 7.66271  7.65538
w@ 0.000298 0.000447 0.008803 0.010425 0.467277 0.473844 7.63338  7.64076
wh 0.001396 0.001243 0.015807 0.014454 0.491792 0.486037 7.66259  7.65529
3 w@ 0.000377 0.00053 0.009610 0.010963 0.468825 0.47458 7.63359  7.64082
s wh 0.001288 0.001145 0.014898 0.013894 0.489547 0.484935 7.66197  7.65511
w@ 0.000485 0.000628 0.010520 0.011523 0.47107 0.475682 7.63418  7.64115
Table 3
Central dimensionless deflection of clamped double layer circular nano-plate under uniformly distributed loading.
u r=Inm r=2nm r = 5nm r = 10nm
(nm’) C=5x10" c=10" C=5x10" c=10" C=5x10" Cc=10"  C=5x10"" C=10"
0 wh 0.000636 0.000632 0.006791 0.006402 0.143469 0.134856 2.00355 1.99615
w® 4.69E-06 9.26E-06 0.000514 0.000906 0.109737 0.11835 1.97404 1.98143
| wh 0.00061 0.000585 0.0062 0.005602 0.140572 0.133692 2.00346 1.99613
w® 3.06E-05 5.59E-05 0.001108 0.001705 0.112634 0.119514 1.97413 1.98146
wh 0.000588 0.000551 0.005796 0.005167 0.138571 0.132751 2.00337 1.99611
2 w® 5.24E-05 9.03E-05 0.001511 0.00214 0.114635 0.120455 1.97421 1.98148
wh 0.00057 0.000524 0.005505 0.004893 0.137092 0.132019 2.00322 1.996
. w® 7.14E-05 0.000117 0.001803 0.002414 0.116114 0.121187 1.97437 1.98158
s wh 0.000539 0.000487 0.005111 0.004567 0.135038 0.130971 2.00253 1.99568

w? 0.000102 0.000154 0.002197 0.00274 0.118165 0.122235 1.97505 1.98191
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The central dimensionless deflection in »=2nm is tabulated in the Table 4. for different number of layers. From

Table 4., it is clear that for graphene sheets with higher number of layers, the W(i) reduced and distributed among
other layers. That is to be expected, because the constraint of clamped boundary condition is stronger than simply

supported boundary condition and the v?/(i) is smaller.
Table 4

Central dimensionless deflection of simply supported multi-layer circular nano-plate under uniformly distributed loading (r=2nm,
S:Simply, C:Clamped).

n 3 Layer 4 Layer 6 Layer 8 Layer

(nm?) S C S C S C S C
wh 0.018079  0.006389  0.018039  0.006389  0.018034  0.006389  0.018034 0.006388
w® 0.005401 0.00081 0.005286  0.000808  0.005276  0.000808  0.005276 0.000809
w3 0.001937  0.000109  0.001542  9.75E-05  0.001507  9.74E-05  0.001507 9.76E-05

e 0.000552  1.3E-05  0.00043  1.17E-05  0.00043 1.17E-05
0 o) 0.000125  14E-06  0.000122  1.4E-06
7O 449E-05 1.87E-07  3.5E-05  1.68E-07
# 1.02E-05  2.01E-08
w® 3.64E-06  2.7E-09
=0 0.014540  0.005507  0.014272  0.005502  0.014211  0.005501  0.014209  0.005501
=2 0.006881  0.001385  0.006416  0.001367  0.006312  0.001366  0.006308  0.001366
#3 0.003996  0.000415  0.002996  0.000339  0.002772  0.000334  0.002764  0.000334
F® 0.001733  0.0001 0.001224  8.1E-05  0.001206  8.1E-05
! o) 0.000569  1.98E-05  0.000527  1.96E-05
O 0.000328  5.84E-06  0.000232  4.72E-06
D 0.000108  1.15E-06
w® 6.22E-05  3.39E-07
=D 0.012915  0.004969  0.012401  0.004949  0.012232  0.004946  0.012221  0.004946
52 0.0074 0.001656  0.006651  0.001607  0.006405  0.001601  0.006388  0.001601
3 0.005102  0.000683  0.003774  0.000533  0.003338  0.000517  0.003308  0.000517
@ 0.002592  0.000219  0.001765  0.000166  0.001708  0.000166
2 o) 0.000996  5.47E-05  0.000885  5.3E-05
7©) 0.000682  2.23E-05  0.000467  1.7E-05
7 0.000263  5.55E-06
w® 0.00018  2.26E-06
=D 0011975 0.004598  0.011256  0.004557  0.010962  0.004551  0.010932  0.004547
@ 0007665 0.001814  0.006704  0.001731  0.006313  0.001717  0.006274  0.001718
#®  0.005778  0.000896  0.004258  0.000684  0.003637  0.00065  0.003574  0.00065
e 0.003199  0.000336  0.002141  0.000246  0.002034  0.000245
3 o) 0.001352  9.66E-05  0.001165  9.22E-05
w6 0.001013  4.73E-05  0.000684  3.48E-05
w7 0.000431  1.36E-05
#® 0.000323  6.66E-06
=D 0.010932  0.004115  0.009912  0.004026  0.009381  0.004005  0.009298  0.004004
#2 0.007932  0.001991  0.006694  0.001844  0.006045  0.001808  0.005946  0.001807
#3  0.006554  0.001201  0.00483  0.000897  0.003927  0.000823  0.003788  0.00082
s @ 0.003981  0.000541  0.002627  0.000379  0.002419  0.000372
o) 0.001886  0.000184  0.001563  0.000169
7© 0.001551  0.00011  0.001043  7.73E-05
w7 0.000747  3.74E-05
® 0.000614  2.24E-05

At the next stage, parametric studies are conducted for annular multi-layers. Table 5. presented the vAv(i) at the
r;=3.5nm. In this table, the influences of nonlocal parameter and boundary conditions on the variations of
dimensionless deflections are studied. Influence of non-uniformity of shear and normal tractions are studied in Table
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20 Bending Analysis of Multi-Layered Graphene Sheets....

6. for circular and annular multi-layer graphene sheets. Also, Table 7. shows the variation of the central deflection of
6 layer annular GS for non-uniform tractions and different combinations of boundary conditions. From Table 6., it is
observed that the non-uniformity of external loads has a notable effect on the central deflection of circular MLGS:s.
From Table 7. it is observed that for four different boundary conditions, the annular graphene sheet with clamped-
clamped boundary condition has the smallest deflection whereas clamped-free annular graphene sheet has the largest
deflection since constraint of boundary conditions become weaker with order of clamped, simply supported and free

edge conditions.

Table 5
Dimensionless deflection of multi-layer annular nano-plates at #=3.5 nm under uniformly distributed loading (C=10", r/=2nm,
r,=3nm).
n 3 Layer 4 Layer 6 Layer 8 Layer
(nm?) S-S C-F S-S C-F S-S C-F S-S C-F
w 0.017414  0.025492  0.017346  0.024209  0.017339  0.023702  0.017338  0.023655
w 0.005744  0.014716  0.005577  0.012977  0.005559  0.012293  0.005559  0.012228
w® 0.002334  0.010726  0.001826  0.007916  0.00177 0.006811  0.001769  0.006706
0 w® -— - 0.000742  0.005832  0.000565  0.003915  0.000563  0.003733
w® -— -—- - - 0.000185  0.002423  0.000179  0.002099
w(®) -— -—- - - 7.51E-05  0.001789  5.72E-05 0.00121
w7 — -—- -—- - - - 1.87E-05  0.000749
w® -— - - - - - 7.6E-06 0.000553
w 0.014517  0.024516  0.014233  0.023072  0.014167 0.02246 0.014163  0.022395
w? 0.006909  0.015102  0.006426  0.013201  0.006314  0.012397  0.006308  0.01231
w® 0.004065  0.011316  0.003044  0.008349  0.002806  0.007099  0.002794  0.006964
1 w® -—- -—-- 0.001789  0.006312  0.001259  0.004218  0.001231 0.003992
w® - - - - 0.000595  0.002706  0.000546  0.002319
w(© - - - - 0.00035 0.002055  0.000245  0.001385
w7 -—- - - - - - 0.000116  0.000891
w® -—- - - - - - 6.81E-05  0.000677
w® 0.013051 0.023728  0.012545 0.02213 0.012378  0.021413  0.012368  0.021329
w® 0.007382  0.015359  0.006642  0.013302  0.006401 0.01238 0.006384  0.012271
w® 0.005058  0.011847  0.003743  0.008735  0.003314  0.007343  0.003284  0.007177
5 w® -— - 0.002561  0.006767  0.001746  0.004505  0.001689  0.004236
w> -— -— - - 0.000982 0.00298 0.000873  0.002531
w(® -— -— - - 0.000672  0.002314  0.000459  0.001557
w7 — -— -— - - — 0.000258  0.001031
w® — -— -— - - — 0.000177  0.000801
w 0.012161  0.023085  0.011466 0.02134 0.011186  0.020517 0.01116 0.020412
w 0.007638  0.015548  0.006704  0.013345  0.006329  0.012306  0.006293  0.012173
w3 0.005693  0.012301 0.004198  0.009065  0.003598  0.007537 0.00354 0.00734
3 w® -— -—- 0.003125  0.007185  0.002095  0.004765  0.001994  0.004453
w® -— -— - - 0.001309  0.003242  0.001131  0.002732
w(® -— -— - - 0.000974  0.002567  0.000658  0.001725
w7 -—-- - - - - - 0.000411 0.001172
w® -—-- - - - - - 0.000306  0.000927
w® 0.011131 0.022108  0.010153  0.020093  0.009655  0.019059  0.009581 0.018909
w® 0.007909  0.01581 0.006708  0.013355  0.006096  0.012089  0.006006  0.011903
w® 0.006452  0.013016  0.004755  0.009592  0.003891 0.00781 0.003763  0.007547
5 w® -—-- - 0.003875  0.007894  0.002561 0.005206  0.002367  0.004804
w(® -—-- - - - 0.001813  0.003721 0.001508 0.00309
w©® -—-- - - - 0.001476  0.003048  0.000992  0.002045
w7 — -— -— - -—-- -— 0.000702  0.001452
w® — — — — — - 0.000571  0.001184
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Table 6
Central dimensionless deflection of 4-layer circular nano-plates under non-uniform shear and normal tractions (C=10",

T=g=10%).

u (nm°)
0 1 2 3 5

wD 0.009392 0.008093 0.007281 0.006707 0.005926

e 0.001233 0.002041 0.002387 0.002565 0.002726

vy =Py =2 Clamp e 0.000149 0.000509 0.000797 0.001018 0.001332
a=p =1 o) 2E-05 0.000151 0.000328 0.000503 0.000805
w=p=0 o) 0.027404 0.021637 0.018777 0.017032 0.014994
Simply e 0.008161 0.009864 0.010204 0.010273 0.010239

support e 0.002385 0.004624 0.005818 0.006559 0.00743

) 0.000855 0.002677 0.004002 0.004939 0.006139

D 0.004696 0.004045 0.00364 0.003353 0.002964

e 0.000616 0.001021 0.001194 0.001283 0.001363

Clamp e 7 47E-05 0.000254 0.000399 0.000509 0.000666

Z” N ﬁﬁo :]] @ 9.97E-06 7.56E-05 0.000164 0.000251 0.000403
afz _ /))12 _, wD 0.013704 0.010816 0.009388 0.008516 0.007497
Simply e 0.004079 0.004933 0.005102 0.005136 0.005119

support e 0.001191 0.002313 0.002909 0.00328 0.003715

) 0.000426 0.001339 0.002002 0.002469 0.003069

Table 7

Dimensionless deflection of 6-layer annular nano-plates at 7=3.5 nm under non-uniform shear and normal tractions (C=10"’,

r=2nm, r,=5nm, 7= qg= 108 ).

og=pp=1 u (nm’)
0;’2 ;/;)’12;_2] 0 1 2 3 5
w 0.008166 0.007007 0.006286 0.005773 0.005069
w2 0.001568 0.002143 0.002365 0.002461 0.002513
w® 0.000299 0.000659 0.000899 0.001063 0.001266
5-C w® 5.7E-05 0.000204 0.000345 0.000466 0.000653
w® 1.09E-05 6.46E-05 0.000138 0.000216 0.00036
w©® 2.47E-06 2.54E-05 6.93E-05 0.000124 0.000243
w® 0.016494 0.013477 0.011776 0.010641 0.009184
w2 0.005288 0.006007 0.006089 0.006021 0.005799
3 w® 0.001683 0.00267 0.003152 0.003423 0.003701
w® 0.000537 0.001198 0.00166 0.001993 0.002437
w® 0.000176 0.000566 0.000934 0.001245 0.001724
w(©® 7.14E-05 0.000333 0.000639 0.000926 0.001404
w® 0.005395 0.004353 0.004044 0.003604 0.005395
w2 0.000713 0.0013 0.001405 0.001503 0.000713
c.C w3 9.27E-05 0.000392 0.000495 0.000638 9.27E-05
w® 1.2E-05 0.000119 0.000176 0.000275 1.2E-05
w® 1.57E-06 3.68E-05 6.47E-05 0.000125 1.57E-06
w(©® 2.29E-07 1.41E-05 2.97E-05 7.07E-05 2.29E-07
wh 0.020636 0.019284 0.018173 0.017261 0.015789
w@ 0.010424 0.010633 0.01068 0.010651 0.010498
F-C w3 0.005742 0.006067 0.006336 0.00654 0.006825
w® 0.003296 0.0036 0.003887 0.00414 0.004569
w> 0.002039 0.002308 0.002571 0.002819 0.003275
w(© 0.001506 0.001753 0.001997 0.002233 0.002688
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5 CONCLUSIONS

The bending analysis of MLGSs is studied within the framework of the nonlocal Mindlin’s plate theory and by using
Hamilton’s principle. The external load of MLGS is considered to be non-uniform in both shear and normal
directions. It is found that in the MLGSs, unlike SLGSs, nonlocal parameter has a decreasing effect on deflection of
first layer whereas this parameter has an increasing effect on other graphene layers. Furthermore, obtained results
shows that vdW interaction forces have considerable effects in the bending behavior of MLGSs and based on the
distance of graphene layers, the equal constant of these forces should be suitably chosen. Several tapes of boundary
conditions are examined and effect of them is obtained.
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