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 ABSTRACT 

 Bending analysis of multilayer graphene sheets (MLGSs) subjected to non-uniform 

shear and normal tractions is presented. The constitutive relations are considered to be 

non-classical based on nonlocal theory of elasticity. Based on the differential 

transformation method, numerical illustrations are carried out for circular and annular 

geometries. The effects of nano scale parameter, radius of circular and annular 

graphene sheet, number of layers as well as distance between layers in the presence of 

van der Waals interaction forces are investigated. In addition, the effects of different 

boundary conditions are also examined. The numerical results show that above 

mentioned parameters have significant effects on the bending behavior of MLGSs 

under the action of non-uniform shear and normal tractions. 

                                               © 2017 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 RAPHENE sheets are adjacent nano-plates consisting of monolayer graphite. Due to their honeycomb lattice 

structure, multi layer graphene sheets has extraordinary and distinctive mechanical and electrical properties that 

make them valuable in a wide variety of applications in micro and nano-electromechanical systems (MEMS and 

NEMS) and large amount of research has been dedicated to their applications such as biotechnology, nano-

mechanical resonator, etc ([1]-[2]). In the past decade, there are considerable researches focused on the behavior of 

nano structures by using conventional theories ([3]–[5]). These theories cannot capture intrinsic size-dependence 

properties of nanostructures. In order to overcome this problem, some scale-based theories such as Cosserat theory, 

couple stress theory and nonlocal theory are presented. Nonlocal theory is one of the familiar continuum models that 

includes intrinsic size-dependence in its constitutive equation [6] and great deal of attentions has been devoted to 

this theory ([7]).  This theory has more accuracy compared with experimental results ([8]-[9]). Babaei and Shahidi 

[10] concerned quadrilateral multi-layered grapheme sheets with simply supported edge conditions. They studied the 

free vibration behavior of MLGS by using nonlocal theory and showed that number of layer affected the higher 

modes. Duan and Wang [11] investigated the bending of circular micro and nano-plate. They used variable 

transformation technique to solve the nonlocal equations. They obtained that considering the nonlocal parameter 

leads to larger deflections. Lim et al. [12] investigated tortional vibration of nanotubes by considering axial moving 

of them. They derived their equations by considering history of nonlinear straining with reference to an undeformed 

state. Murmu and Pradhan [13] studied effect of nonlocal parameter on the free in-plate vibration of nano-plates. In 

the other work, Pradhan and Phadikar [14] used nonlocal classical and first order plate theory to analyze vibration of 
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single and double layer nano-plates. They showed that effect of nonlocal theory becomes more significant when the 

size of the plate become small. Bi-axial buckling of double-orthotropic nano-plates was investigated by Radić et al. 

[15]. They focused on the effect of surrounding elastic medium and obtained that considering the elastic medium 

significantly reduces the impact of small scale effect. Zenkour and Sobhy [16] considered thermal buckling of single 

layered graphene sheets by using nonlocal sinusoidal shear deformation plate theory. They obtained that results 

obtained from shear deformation theory are more reliable than those obtained from classical plate theory. Wang and 

Li [17] studied the bending behavior of single layer rectangular nano-plate by using CPT and FSDT. They presented 

analytical formulations for simply-supported nano-plates. Narendar and Gopalakrishnan [18] extended nonlocal 

two-variable refined plate theory to investigate the buckling behavior of orthotropic nano-plate. They showed that 

buckling load of orthotropic nano-plate is always smaller than that of an isotropic nano-plate.  

Farajpour et al. [19] investigated the buckling behavior of circular single-layered graphene sheets (SLGS) under 

uniform radial compression by  using nonlocal elasticity theory. In other work, they considered non-uniformity in 

the thickness of nano-plate and showed that buckling behavior of SLGS is sensitive to this parameter [20]. Also, 

Malekzadeh and Farajpour [21] studied axisymmetric vibrations of circular nanoplates under initial in-plane radial 

stresses by employing Galerkin method. The effects of nonlocal parameter, elastic foundation and initial radial 

stresses on the natural frequency of the circular nanoplates are investigated by them. Bedroud  et al. [22]-[23] 

presented an analytical solution for buckling analysis of both homogeneous  and functionally graded circular/annular 

Mindlin nanoplates under uniform radial compressive in-plane load.  

In other work, Shaban and Alibeigloo[24]–[26] investigated bending and free vibration behavior of single-walled 

carbon nano-tubes (SWCNTs) based on three-dimensional theory of elasticity. Surveying available literature reveals 

that up to now no research has been made to study the bending behavior of multilayer graphene sheets (MLGSs) 

with various boundary conditions and this research attempt to consider this. Furthermore, in the present research, a 

more general load consists of non-uniform shear and normal tractions are considered. A semi-analytical method 

based on the differential transform method (DTM) which is successfully used in previous works to determine 

stresses distribution and natural frequencies of  two-directional functionally graded plates ([27]–[29]) is developed 

in this work to solve the governing equations of MLGSs. In the present study, effects of the van der Wall (vdW) 

interaction forces between layers are also included in the formulations and influences of these forces are discussed. 

2    GOVERNING EQUATIONS  

Consider an annular multilayer graphene sheets with outer radius Ro, inner radius Ri and thickness h and vdW 

interaction force field as shown schematically in Fig. 1. For each layer, the Mindlin’s plate theory based on the 

following assumed displacement field 

 

  0 0( , , ) ( , ) ( , ) ( , , ) ( , )ru r z t u r t z r t w r z t w r t               (1) 

 

where u0, v0, and w0 are the radial, circumferential, and transverse displacement components of the mid-surface of 

the circular plate, respectively. r  is shear rotation of the normal to the middle surface with respect to the radial 

direction. The strain–displacement equations of linear elasticity are as follow 
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   (2) 

 

In the nonlocal theory, unlike the stress tensor at a reference point in a continuum body depends not only on the 

strain tensor at that point, but also on the strain tensor of other points. Constitutive model that expresses the nonlocal 

stress tensor is as follow 

 

 21 ij ij ijkl klt c                 (3) 

 

µ is the nonlocal parameter, ij  is the nonlocal stress tensor,
 ijt is the local (classical) stress tensor, ijklc  is the 
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fourth-order elasticity tensor and ij  is the local (classical) strain tensor. According to Eq. (2) the constitutive 

relations for circular and annular nano-plate are given by 
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κ

2
 denotes the transverse shear correction factor. The stress and moment resultants per unit length defined as 

below: 
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By substituting Eqs. (2) into Eqs (4) and (5), the following equations can be derived for each layer 
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(7) 

 

Here, the principle of minimum total energy is used to derive the governing equations.  

 
0U W             (8) 

 

where U and W are the strain energy and work of the externally applied loads, respectively. The variation of strain 

energy and work of the externally applied loads are as follow, 
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where T and P are shear and normal tractions applied to graphene sheets, respectively. i is the layer number and it 

can be seen that each layer interacted by adjacent top and bottom layer. It is worthy to mention that vdW interaction 

forces between layers are taken into consideration by utilizing springs with constant C. The 1
st
 and n

th
 layers are 

interacted only by their neighboring layer. 

By using Eqs. (1) and (2), Eqs. (9) can be written as follow: 
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By substituting Eq. (10) into Eq. (8), using the theorem of integration by parts and collecting the coefficients of 
( ) ( )
0 ,i i

ru   and ( )iw , three governing equations for i
th

 layer may be derived in the cylindrical coordinate system 

(r,θ, z) 
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Considering Eqs. (6), one can obtain the governing Eqs. (11) in terms of displacement components 
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Fig.1 

Schematic of Multi layer graphene sheets. 
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3    SOLUTION PROCEDURE FOR SOLVING GOVERNING EQUATIONS 

The set of governing equations are solved by using differential transformation method). The displacement 

components (u0 and w0) and radial rotation r  are analytic in our domain and can be represented by using Taylor 

power series as follow: 
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(13) 

 

In the above relations, ( ) ( ) ( ), ,i i i
k k kU W   are the transformed functions in DTM. In this study, non-uniform shear 

and normal tractions are considered as follow 
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Substituting  relations (13) into Eqs. (12), one may obtain three transformed differential equations for governing 

equations  
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Notices that series expansion formulations provided below are used to obtain Eqs. (15) 
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To find the solution of Eq. (15), it is required that the coefficient of terms with same powers is set equal to zero 

and recurrence relations are founded. To obtain the coefficients ( ) ( ) ( ) ( ) ( ) ( )
0 1 0 1 0 1, , , , ,i i i i i iU U W W   boundary 

conditions should be taken into account. Three types for boundary conditions and their transformed forms are given 

in as follows. 

Clamped (C): 
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Simply supported (S): 
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Free edge (F): 
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In the center of solid circular graphene sheets, the following conditions should be satisfied: 
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4    NUMERICAL RESULTS AND DISCUSSION 

First, for comparison purposes, the present analysis was initially restricted and applied to the case of double layer 

circular graphene sheets subjected uniformly normal traction q=0.14 MPa plates having Young’s modulus 
E=0.396Ec, Ec=151 Gpa and Poisson’s ratio ν=0.288 and compared with the corresponding results in reference 

[30]. C is vdW interaction constant between graphene layers. The non-dimensional deflection is defined as 
3

4 2

64
,

12(1 )

c c
c

o

D E h
w w D

qr v
 


. As it is observed from Table 1., there is good agreement between the obtained results 

and previous researches. Moreover, from Table 1. one can observed that decreasing constant C, caused the 

deflection of upper graphene layer to increased opposite to deflection of lower graphene layer. According to Table 

1., one can see that if vdW constant, C, is significantly large, the springs become rigid and the deflection of two 

layers be equal. But when this constant become very small, the deflection of first layer has no effect on the 

deflection of second adjacent  layer. In the remaining parts of this study, the material and geometrical properties are 
assumed as follow: Young modulus E=2.99 TPa, thickness h=0.34 nm, q=100 MPa, Poisson’s ratio ν=0.397. 

Table 2. shows the dimensionless central deflection (
   ˆ /
i i

w w h ) of a simply supported double layer circular 

graphene sheets under uniformly normal traction for different values of nonlocal parameter, vdW interaction 

constant and outer radius. Similar results presented in Table 3. for double layer fully clamped circular graphene 

sheets. From these tables, one can observed that irrespective of other parameters, by increasing the nonlocal 

parameter, μ, the central deflection of first layer, 
 1

ŵ will be decreased. In contrast, the central deflection of second 
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layer, 
 2

ŵ  will be increased. Furthermore, it can be observed that 
 1

ŵ  contrary to 
 2

ŵ decreased when the vdW 

constant, C, increased. For double layer graphene sheets with larger diameters, however, it is seen from Tables 2. 

and 3 that both central deflections get almost larger. Also, considering edge condition, the central deflections in 

clamped circular graphene sheets are always smaller that those with simply supported edge condition. 

 
 Table 1 

Comparison of dimensionless central deflection, w  for the double layer circular nano-plate. 

 
Table 2 

Central dimensionless deflection of simply supported double layer circular nano-plate under uniformly distributed loading. 

μ 

(nm2)
 

 r = 1nm r = 2nm r = 5nm r = 10nm 

 C=5×1018 C=1019 C=5×1018 C=1019 C=5×1018 C=1019 C=5×1018 C=1019 

0 
(1)w  0.001739 0.001706 0.020780 0.018590 0.497578 0.488279 7.66279 7.65541 

(2)w  3.43×10-5 6.62×10-5 0.004638 0.006827 0.463039 0.472338 7.63326 7.64071 

1 
(1)w  0.001583 0.00146 0.017981 0.016005 0.495281 0.487626 7.66276 7.65541 

(2)w  0.000189 0.000313 0.007437 0.009412 0.465336 0.472991 7.63335 7.64071 

2 
(1)w  0.001475 0.001326 0.016615 0.014993 0.493340 0.486773 7.66271 7.65538 

(2)w  0.000298 0.000447 0.008803 0.010425 0.467277 0.473844 7.63338 7.64076 

3 
(1)w  0.001396 0.001243 0.015807 0.014454 0.491792 0.486037 7.66259 7.65529 

(2)w  0.000377 0.00053 0.009610 0.010963 0.468825 0.47458 7.63359 7.64082 

5 
(1)w  0.001288 0.001145 0.014898 0.013894 0.489547 0.484935 7.66197 7.65511 

(2)w  0.000485 0.000628 0.010520 0.011523  0.47107    0.475682 7.63418 7.64115 

 

Table 3 

Central dimensionless deflection of clamped double layer circular nano-plate under uniformly distributed loading. 

μ 

(nm2)
 

 r = 1nm r = 2nm r = 5nm r = 10nm 

 C=5×1018 C=1019 C=5×1018 C=1019 C=5×1018 C=1019 C=5×1018 C=1019 

0 

(1)w   0.000636 0.000632 0.006791 0.006402 0.143469 0.134856 2.00355 1.99615 

(2)w   4.69E-06 9.26E-06 0.000514 0.000906 0.109737 0.11835   1.97404 1.98143 

1 

(1)w  0.00061 0.000585 0.0062     0.005602 0.140572 0.133692 2.00346 1.99613 

(2)w   3.06E-05 5.59E-05 0.001108 0.001705 0.112634 0.119514 1.97413 1.98146 

2 

(1)w   0.000588 0.000551 0.005796 0.005167 0.138571 0.132751 2.00337 1.99611 

(2)w   5.24E-05 9.03E-05 0.001511 0.00214   0.114635 0.120455 1.97421 1.98148 

3 

(1)w  0.00057 0.000524 0.005505 0.004893 0.137092 0.132019 2.00322 1.996     

(2)w   7.14E-05 0.000117 0.001803 0.002414 0.116114 0.121187 1.97437 1.98158 

5 

(1)w   0.000539 0.000487 0.005111 0.004567 0.135038 0.130971 2.00253 1.99568 

(2)w   0.000102 0.000154 0.002197 0.00274   0.118165 0.122235 1.97505 1.98191 

Ref [30] 
C  

τ B.C 
10-3 106 109 1012  

 2.639   2.640  2.635 1.565 1.320 (1)w  

0.1 

Clamp 
---- 5.110×10-12  0.005 1.075 1.320 (2)w  

 2.979   2.985  2.984 2.442 1.494 (1)w   

0.2 ---- 8.321×10-13    0.0008 0.543 1.491 (2)w  

10.481 10.482 10.401 5.507 5.241 (1)w  
 

0.1 
Simply 

Support 

---- 8.207×10-11    0.0808 4.976 5.241 (2)w  

10.822 10.827 10.816 7.158 5.415 (1)w   

0.2 ---- 1.010×10-11   0.011 3.669 5.412 (2)w  
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The central dimensionless deflection in r=2nm is tabulated in the Table 4. for different number of layers. From 

Table 4., it is clear that for graphene sheets with higher number of layers, the 
 ˆ i

w  reduced and distributed among 

other layers. That is to be expected, because the constraint of clamped boundary condition is stronger than simply 

supported boundary condition and the 
 ˆ i

w  is smaller. 

 

Table 4 

Central dimensionless deflection of simply supported multi-layer circular nano-plate under uniformly distributed loading (r=2nm, 

S:Simply, C:Clamped). 

μ 

(nm2)
  

3 Layer 4 Layer 6 Layer 8 Layer 

S C S C S C S C 

0 

(1)w  0.018079 0.006389 0.018039 0.006389 0.018034 0.006389 0.018034 0.006388 
(2)w  0.005401 0.00081 0.005286 0.000808 0.005276 0.000808 0.005276 0.000809 
(3)w  0.001937 0.000109 0.001542 9.75E-05 0.001507 9.74E-05 0.001507 9.76E-05 
(4)w  ---- ---- 0.000552 1.3E-05   0.00043   1.17E-05 0.00043   1.17E-05 
(5)w  ---- ---- ---- ---- 0.000125 1.4E-06   0.000122 1.4E-06 
(6)w  ---- ---- ---- ---- 4.49E-05 1.87E-07 3.5E-05 1.68E-07 
(7)w  ---- ---- ---- ---- ---- ---- 1.02E-05 2.01E-08 
(8)w  ---- ---- ---- ---- ---- ---- 3.64E-06 2.7E-09 

1 

(1)w  0.014540 0.005507 0.014272 0.005502 0.014211 0.005501 0.014209 0.005501 
(2)w  0.006881 0.001385 0.006416 0.001367 0.006312 0.001366 0.006308 0.001366 
(3)w  0.003996 0.000415 0.002996 0.000339 0.002772 0.000334 0.002764 0.000334 
(4)w  ---- ---- 0.001733 0.0001    0.001224 8.1E-05 0.001206 8.1E-05 
(5)w  ---- ---- ---- ---- 0.000569 1.98E-05 0.000527 1.96E-05 
(6)w  ---- ---- ---- ---- 0.000328 5.84E-06 0.000232 4.72E-06 
(7)w  ---- ---- ---- ---- ---- ---- 0.000108 1.15E-06 
(8)w  ---- ---- ---- ---- ---- ---- 6.22E-05 3.39E-07 

2 

(1)w  0.012915 0.004969 0.012401 0.004949 0.012232 0.004946 0.012221 0.004946 
(2)w  0.0074     0.001656 0.006651 0.001607 0.006405 0.001601 0.006388 0.001601 
(3)w  0.005102 0.000683 0.003774 0.000533 0.003338 0.000517 0.003308 0.000517 
(4)w  ---- ---- 0.002592 0.000219 0.001765 0.000166 0.001708 0.000166 
(5)w  ---- ---- ---- ---- 0.000996 5.47E-05 0.000885 5.3E-05 
(6)w  ---- ---- ---- ---- 0.000682 2.23E-05 0.000467 1.7E-05 
(7)w  ---- ---- ---- ---- ---- ---- 0.000263 5.55E-06 
(8)w  ---- ---- ---- ---- ---- ---- 0.00018 2.26E-06 

3 

(1)w  0.011975 0.004598 0.011256 0.004557 0.010962 0.004551 0.010932 0.004547 
(2)w  0.007665 0.001814 0.006704 0.001731 0.006313 0.001717 0.006274 0.001718 
(3)w  0.005778 0.000896 0.004258 0.000684 0.003637 0.00065 0.003574 0.00065 
(4)w  ---- ---- 0.003199 0.000336 0.002141 0.000246 0.002034 0.000245 
(5)w  ---- ---- ---- ---- 0.001352 9.66E-05 0.001165 9.22E-05 
(6)w  ---- ---- ---- ---- 0.001013 4.73E-05 0.000684 3.48E-05 
(7)w  ---- ---- ---- ---- ---- ---- 0.000431 1.36E-05 
(8)w  ---- ---- ---- ---- ---- ---- 0.000323 6.66E-06 

5 

(1)w  0.010932 0.004115 0.009912 0.004026 0.009381 0.004005 0.009298 0.004004 
(2)w  0.007932 0.001991 0.006694 0.001844 0.006045 0.001808 0.005946 0.001807 

(3)w  0.006554 0.001201 0.00483   0.000897 0.003927 0.000823 0.003788 0.00082 
(4)w  ---- ---- 0.003981 0.000541 0.002627 0.000379 0.002419 0.000372 
(5)w  ---- ---- ---- ---- 0.001886 0.000184 0.001563 0.000169 
(6)w  ---- ---- ---- ---- 0.001551 0.00011  0.001043 7.73E-05 
(7)w  ---- ---- ---- ---- ---- ---- 0.000747 3.74E-05 
(8)w  ---- ---- ---- ---- ---- ---- 0.000614 2.24E-05 

 

At the next stage, parametric studies are conducted for annular multi-layers. Table 5. presented the 
 ˆ i

w  at the 

ri=3.5nm. In this table, the influences of nonlocal parameter and boundary conditions on the variations of 

dimensionless deflections are studied. Influence of non-uniformity of shear and normal tractions are studied in Table 
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6. for circular and annular multi-layer graphene sheets. Also, Table 7. shows the variation of the central deflection of 

6 layer annular GS for non-uniform tractions and different combinations of boundary conditions. From Table 6., it is 

observed that the non-uniformity of external loads has a notable effect on the central deflection of circular MLGSs. 

From Table 7. it is observed that for four different boundary conditions, the annular graphene sheet with clamped-

clamped boundary condition has the smallest deflection whereas clamped-free annular graphene sheet has the largest 

deflection since constraint of boundary conditions become weaker with order of clamped, simply supported and free 

edge conditions. 
 

Table 5 

Dimensionless deflection of multi-layer annular nano-plates at r=3.5 nm under uniformly distributed loading (C=1019, ri=2nm, 

ro=5nm). 

μ 

(nm2)
  

3 Layer 4 Layer 6 Layer 8 Layer 

S – S C - F S – S C - F S - S C - F S - S C - F 

0 

(1)w  0.017414 0.025492 0.017346 0.024209 0.017339 0.023702 0.017338 0.023655 
(2)w  0.005744 0.014716 0.005577 0.012977 0.005559 0.012293 0.005559 0.012228 
(3)w  0.002334 0.010726 0.001826 0.007916 0.00177   0.006811 0.001769 0.006706 
(4)w  ---- ---- 0.000742 0.005832 0.000565 0.003915 0.000563 0.003733 
(5)w  ---- ---- ---- ---- 0.000185 0.002423 0.000179 0.002099 
(6)w  ---- ---- ---- ---- 7.51E-05 0.001789 5.72E-05 0.00121 
(7)w  ---- ---- ---- ---- ---- ---- 1.87E-05 0.000749 
(8)w  ---- ---- ---- ---- ---- ---- 7.6E-06   0.000553 

1 

(1)w  0.014517 0.024516 0.014233 0.023072 0.014167 0.02246 0.014163 0.022395 
(2)w  0.006909 0.015102 0.006426 0.013201 0.006314 0.012397 0.006308 0.01231   
(3)w  0.004065 0.011316 0.003044 0.008349 0.002806 0.007099 0.002794 0.006964 
(4)w  ---- ---- 0.001789 0.006312 0.001259 0.004218 0.001231 0.003992 
(5)w  ---- ---- ---- ---- 0.000595 0.002706 0.000546 0.002319 
(6)w  ---- ---- ---- ---- 0.00035 0.002055 0.000245 0.001385 
(7)w  ---- ---- ---- ---- ---- ---- 0.000116 0.000891 
(8)w  ---- ---- ---- ---- ---- ---- 6.81E-05 0.000677 

2 

(1)w  0.013051 0.023728 0.012545 0.02213 0.012378 0.021413 0.012368 0.021329 
(2)w  0.007382 0.015359 0.006642 0.013302 0.006401 0.01238 0.006384 0.012271 
(3)w  0.005058 0.011847 0.003743 0.008735 0.003314 0.007343 0.003284 0.007177 
(4)w  ---- ---- 0.002561 0.006767 0.001746 0.004505 0.001689 0.004236 
(5)w  ---- ---- ---- ---- 0.000982 0.00298 0.000873 0.002531 
(6)w  ---- ---- ---- ---- 0.000672 0.002314 0.000459 0.001557 
(7)w  ---- ---- ---- ---- ---- ---- 0.000258 0.001031 
(8)w  ---- ---- ---- ---- ---- ---- 0.000177 0.000801 

3 

(1)w  0.012161 0.023085 0.011466 0.02134 0.011186 0.020517 0.01116 0.020412 
(2)w  0.007638 0.015548 0.006704 0.013345 0.006329 0.012306 0.006293 0.012173 
(3)w  0.005693 0.012301 0.004198 0.009065 0.003598 0.007537 0.00354 0.00734 
(4)w  ---- ---- 0.003125 0.007185 0.002095 0.004765 0.001994 0.004453 
(5)w  ---- ---- ---- ---- 0.001309 0.003242 0.001131 0.002732 
(6)w  ---- ---- ---- ---- 0.000974 0.002567 0.000658 0.001725 
(7)w  ---- ---- ---- ---- ---- ---- 0.000411 0.001172 
(8)w  ---- ---- ---- ---- ---- ---- 0.000306 0.000927 

5 

(1)w  0.011131 0.022108 0.010153 0.020093 0.009655 0.019059 0.009581 0.018909 
(2)w  0.007909 0.01581   0.006708 0.013355 0.006096 0.012089 0.006006 0.011903 
(3)w  0.006452 0.013016 0.004755 0.009592 0.003891 0.00781   0.003763 0.007547 
(4)w  ---- ---- 0.003875 0.007894 0.002561 0.005206 0.002367 0.004804 
(5)w  ---- ---- ---- ---- 0.001813 0.003721 0.001508 0.00309 
(6)w  ---- ---- ---- ---- 0.001476 0.003048 0.000992 0.002045 
(7)w  ---- ---- ---- ---- ---- ---- 0.000702 0.001452 
(8)w  ---- ---- ---- ---- ---- ---- 0.000571 0.001184 
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Table 6 

Central dimensionless deflection of 4-layer circular nano-plates under non-uniform shear and normal tractions (C=1019, 
8ˆ ˆ 10T q  ). 

  
μ (nm2)

 

0 1 2 3 5 

α0 = β0 = 2 

α1 = β1 = 1 

α2 = β2 = 0 

 

 

Clamp 

(1)w  0.009392 0.008093 0.007281 0.006707 0.005926 
(2)w  0.001233 0.002041 0.002387 0.002565 0.002726 
(3)w  0.000149 0.000509 0.000797 0.001018 0.001332 
(4)w  2E-05 0.000151 0.000328 0.000503 0.000805 

 

Simply 

support 

(1)w  0.027404 0.021637 0.018777 0.017032 0.014994 
(2)w  0.008161 0.009864 0.010204 0.010273 0.010239 
(3)w  0.002385 0.004624 0.005818 0.006559 0.00743 
(4)w  0.000855 0.002677 0.004002 0.004939 0.006139 

α0 = β0 = 1 

α1 = β1 = -1 

α2 = β2 = 2 

 

Clamp 

(1)w  0.004696 0.004045 0.00364 0.003353 0.002964 
(2)w  0.000616 0.001021 0.001194 0.001283 0.001363 
(3)w  7.47E-05 0.000254 0.000399 0.000509 0.000666 
(4)w  9.97E-06 7.56E-05 0.000164 0.000251 0.000403 

 

Simply 

support 

(1)w  0.013704 0.010816 0.009388 0.008516 0.007497 
(2)w  0.004079 0.004933 0.005102 0.005136 0.005119 
(3)w  0.001191 0.002313 0.002909 0.00328   0.003715 
(4)w  0.000426 0.001339 0.002002 0.002469 0.003069 

 

 

Table 7 

Dimensionless deflection of 6-layer annular nano-plates at r=3.5 nm under non-uniform shear and normal tractions (C=1019, 

ri=2nm, ro=5nm, 8ˆ ˆ 10T q  ). 

α0 = β0 = 1 

α1 = β1 = -1 

α2 = β2 = 2 
 

μ (nm2)
 

0 1 2 3 5 

S-C 

(1)w  0.008166 0.007007 0.006286 0.005773 0.005069 
(2)w  0.001568 0.002143 0.002365 0.002461 0.002513 
(3)w  0.000299 0.000659 0.000899 0.001063 0.001266 
(4)w  5.7E-05 0.000204 0.000345 0.000466 0.000653 
(5)w  1.09E-05 6.46E-05 0.000138 0.000216 0.00036 
(6)w  2.47E-06 2.54E-05 6.93E-05 0.000124 0.000243 

S-S 

(1)w  0.016494 0.013477 0.011776 0.010641 0.009184 

(2)w  0.005288 0.006007 0.006089 0.006021 0.005799 
(3)w  0.001683 0.00267 0.003152 0.003423 0.003701 
(4)w  0.000537 0.001198 0.00166 0.001993 0.002437 
(5)w  0.000176 0.000566 0.000934 0.001245 0.001724 
(6)w  7.14E-05 0.000333 0.000639 0.000926 0.001404 

C-C 

(1)w  0.005395 0.004353 0.004044 0.003604 0.005395 

(2)w  0.000713 0.0013 0.001405 0.001503 0.000713 
(3)w  9.27E-05 0.000392 0.000495 0.000638 9.27E-05 
(4)w  1.2E-05 0.000119 0.000176 0.000275 1.2E-05 
(5)w  1.57E-06 3.68E-05 6.47E-05 0.000125 1.57E-06 
(6)w  2.29E-07 1.41E-05 2.97E-05 7.07E-05 2.29E-07 

F-C 

(1)w  0.020636 0.019284 0.018173 0.017261 0.015789 

(2)w  0.010424 0.010633 0.01068 0.010651 0.010498 
(3)w  0.005742 0.006067 0.006336 0.00654 0.006825 
(4)w  0.003296 0.0036 0.003887 0.00414 0.004569 
(5)w  0.002039 0.002308 0.002571 0.002819 0.003275 
(6)w  0.001506 0.001753 0.001997 0.002233 0.002688 
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5    CONCLUSIONS 

The bending analysis of MLGSs is studied within the framework of the nonlocal Mindlin’s plate theory and by using 

Hamilton’s principle. The external load of MLGS is considered to be non-uniform in both shear and normal 

directions. It is found that in the MLGSs, unlike SLGSs, nonlocal parameter has a decreasing effect on deflection of 

first layer whereas this parameter has an increasing effect on other graphene layers. Furthermore, obtained results 

shows that vdW interaction forces have considerable effects in the bending behavior of MLGSs and based on the 

distance of graphene layers, the equal constant of these forces should be suitably chosen. Several tapes of boundary 

conditions are examined and effect of them is obtained.  
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