Temperature-Dependent Buckling Analysis of Functionally Graded Sandwich Cylinders
Subject Areas : Engineering
1 - Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
2 - Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
Keywords:
Abstract :
[1] Suresh S., Mortensen A., 1998, Fundamentals of Functionally Graded Materials, Barnes and Noble Publisher, London.
[2] Plantema F.G., 1966, Sandwich Construction, John Wiley & Sons Inc., New York.
[3] Allen H.G., 1969, Analysis and Design of Structural Sandwich Panels, Pergamon Press Inc., New York.
[4] Zenkert D., 1995, An Introduction to Sandwich Construction, Chameleon Press, London.
[5] Javaheri R., Eslami M. R., 2002, Thermal buckling of functionally graded plates, AIAA Journal 40(1): 162-169.
[6] Zhao X., Lee Y. Y., Liew K. M., 2009, Mechanical and thermal buckling analysis of functionally graded plates, Composite Structures 90(2): 161-171.
[7] Amir S., Khorasani M., BabaAkbar-Zarei H., 2018, Buckling analysis of nano composite sandwich plates with piezoelectric face sheets based on flexoelectricity and first-order shear deformation theory, Journal of Sandwich Structures & Materials 2018: 109963621879538.
[8] Bouderba B., Houari M.S.A., Tounsi A., Mahmoud S.R., 2016, Thermal stability of functionally graded sandwich plates using a simple shear deformation theory, Structural Engineering and Mechanics 58(3): 397-422.
[9] Amir S., 2016, Orthotropic patterns of visco-Pasternak foundation in nonlocal vibration of orthotropic graphene sheet under thermo-magnetic fields based on new first-order shear deformation theory, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications.
[10] Sepiani H.A., Rastgoo A., Ebrahimi F., Arani A.G., 2010, Vibration and buckling analysis of two-layered functionally graded cylindrical shell, considering the effects of transverse shear and rotary inertia, Materials & Design 31(3): 1063-1069.
[11] Amir S., Bidgoli E.M.R., Arshid E., 2018, Size-dependent vibration analysis of a three-layered porous rectangular nano plate with piezo-electromagnetic face sheets subjected to pre loads based on SSDT, Mechanics of Advanced Materials and Structures 2018: 1-15.
[12] Frostig Y., Baruch M., Wilnay O., Shienman I., 1992, High-order theory for sandwich-beam behavior with transversely flexible core, Journal of Engineering Mechanics 118(5): 1026-1043.
[13] Frostig Y., Baruch M., 1994, Vibration of sandwich beams-a high-order theory approach, Journal of Sound and Vibration 176(2): 195-208.
[14] Bozhevolnaya E., Frostig Y., 2001,Free vibration of curved sandwich beams with a transversely flexible core, Journal of Sandwich Structures and Materials 3: 311-342.
[15] Bozhevolnaya E., Sun J.Q., 2004, Free vibration analysis of curved sandwich beams, Journal of Sandwich Structures and Materials 6: 47-76.
[16] Frostig Y., Thomsen O.T., 2004, High-order free vibration of sandwich panels with a flexible core, International Journal of Solids and Structures 41: 1697-1724.
[17] SchwartsGivli H., Rabinovitch O., Frostig Y., 2008, Free vibration of delaminated unidirectional sandwich panels with a transversely flexible core and general boundary conditions-a high-order approach, Journal of Sandwich Structures and Materials 10: 99-131.
[18] Mohammadi Y., Khalili S.M.R., 2011, Effect of geometrical and mechanical properties on behavior of sandwich beams with functionally graded face sheets under indentation loading, Journal of Materials: Design and Applications 225: 231-244.
[19] Seidi J., Khalili S.M.R., Malekzadeh K., 2015, Temperature-dependent buckling analysis of sandwich truncated conical shells with FG face sheets, Composite Structures 131: 682-691.
[20] Flu W., 1973, Stresses in Shells, Springer-Verlag, New York.
[21] Bush B.O., Almroth B.O., 1975, Buckling of Bars, Plates and Shells, McGraw-Hill, New York.
[22] Theodore von K., Hsue-Shen T., 1941,The buckling of thin cylindrical shells under axial compression, Journal of the Aeronautical Sciences 8(8): 303-312.
[23] Winterstetter T.A., Schmidt H., 2002, Stability of circular cylindrical shells under combined loading, Journal of Thin-Walled Structures 40: 893-909.
[24] Kim S.E., Kim C.S., 2002, Buckling strength of cylindrical shell and tank subjected to axially compressive loads, Journal of Thin-Walled Structures 40: 329-353.
[25] Pinna R., Ronalds B.F., 2002, Buckling and post-buckling of shells with one end pinned and the other end free, Journal of Thin-Walled Structures 40: 507-525.
[26] Ru C.Q., 2000, Effect of van der Waals force on axial buckling of a double walled carbon nanotube, Journal of Applied Physics 87: 7227-7231.
[27] Eslami M.R., Javaheri R.,1999, Buckling of composite cylindrical shells under mechanical and thermal loads, Journal of Thermal Stresses 22: 527-545.
[28] Eslami M.R., Shahsiah R.,2001, Thermal buckling of imperfect cylindrical shells, Journal of Thermal Stresses 24: 71-89.
[29] Mushtari K.M., Sachenkov A.V., 1958, Stability of cylindrical and conical shells of circular cross section with simultaneous actin of axial compression and external normal pressure, NACA TM 1433: 667-674.
[30] Lopatin A.V., Morozov E.V., 2015, Buckling of the composite sandwich cylindrical shell with clamped ends under uniform external pressure, Journal of Composite Structures122: 209-216.
[31] Malinowski M., Belica T., Magnucki K., 2015, Bucklingandpost-buckling behavior of elastic seven-layered cylindrical shells – FEM study, Journal of Thin-Walled Structures 94: 478-484.
[32] Hui-Shen S., 2002, Postbuckling analysis of axially-loaded functionally graded cylindrical shells in thermal environments, Journal of Composites Science and Technology 62: 977-987.
[33] Hui-Shen S., 2003, Postbuckling analysis of pressure-loaded functionally graded cylindrical shells in thermal environments, Journal of Engineering Structures 22: 977-987.
[34] Lis R., Batra R.C., 2006, Buckling of axially compressed thin cylindrical shells with functionally graded middle layer, Journal of Thin-Walled Structures 44: 1039-1047.
[35] Sofiyev A.H., 2014, The vibration and buckling of sandwich cylindrical shells covered by different coatings subjected to the hydrostatic pressure, Journal of Composite Structures 117: 124-134.
[36] Shahsiah R., Eslami M.R., 2003, Functionally graded cylindrical shell thermal instability based on improved donnell equations, AIAA Journal 41: 19-26.
[37] Woo J., Meguid S.A., Stranart J.C., Liew K.M., 2005,Thermo mechanical post buckling analysis of moderately thick functionally graded plates and shallow shells, International Journal of Mechanical Sciences 47: 1147-1171.
[38] Ravikiran K., Ganesan N., 2006, Buckling and free vibration analysis of functionally graded cylindrical shells subjected to a temperature-specified boundary condition, Journal of Sound and Vibration 289: 450-480.
[39] Khalili S.M.R., Mohammadi Y., 2012, Free vibration analysis of sandwich plates with functionally graded face sheets and temperature-dependent material properties: A new approach, European Journal of Mechanics A/Solids 35: 61-74.
[40] Reddy J.N., 2012, Thermal Mechanical Behavior of Functionally Graded Materials, Texas.
[41] Mohammadi Y., Khalili S.M.R., Malekzadeh Fard K., 2016, Low velocity impact analysis of sandwich plates with functionally graded face sheets, Mechanics of Advanced Materials and Structures 23(4): 363-374.