Subject Areas :
مهشید ترک زبان 1 , مرتضی زندهدل 2 , وهاب باباپور 3 , نگار پناهی 4
1 - دانشجوی دکتری دانشکده دامپزشکی دانشگاه علوم تحقیقات، تهران. ایران.
2 - دانشیار دانشکده دامپزشکی دانشگاه تهران، تهران. ایران.
3 - دانشکده دامپزشکی دانشگاه تهران، تهران. ایران.
4 - دانشکده دامپزشکی دانشگاه تهران، تهران. ایران
Keywords:
Abstract :
-رضوانفر، م.، سینائی، ف. 1398. فارماکولوژی پایه و بالینی. چاپ اول. تهران: انتشارات اندیشه رفیع. صفحات، 651-639.
2.Aghajanian, G.K., Kogan, J.H., Moghaddam, B. (1994). Opiate with drawal and increases glutamate aspartate efflux in the locus coeruleus: an in vivo microdialysis study. Brain Res, 636; 126–130.
3.Akil, J., Watson, S. J., Young, E., Lewis, M. E., Khachaturiuan, H. and Walker, J. M. (1984). Endogenous opioids: biology and function. Annu Rev Neurosci, 7; 223– 255.
4.Andrade De, I. S., Gonzalez, J. C., Hirata, A. F., Carneiro,G., Amado, D., Cavalheiro, E. A. (2006). Central but not peripheral glucoprivation is impaired in monosodium glutamate-treated rats. Neurosci Lett, 398(1-2); 6-11.
5.Baghbanzadeh ,A., Babapour, V. (2001). CNS glutamatergic of food intake in domestic fowl.Appetite, 37; 267.
6.Barbato, G. F. (1994). Genetic control of food intake in hickens. J Nutr, 124; 1341S-1348S.
7.Boswell, T. (2005). Regulation of energy balance in birds by the neuroendocrine hypothalamus. J Poult Sci, 42(3); 161-181.
8.Bungo, T., Dodo, K-I., Kawamura, K., Izumi, T. and Ueda, H. (2005). Effects of various μ and δ opioid ligads on food intake in the meat-type chick. Physiol Behav, 85(5); 519-523.
9.Bungo, T., Kawamura, K., Izumi, T., Dodo, K-I., Ueda, H. (2004). Feeding responses to μ, δ and κ-opioid receptor agonists in the meat-type chick. Pharmacol Biochem Behav, 78(4); 707-710.
10.Davis, J. L., Masuoka, D. T., Gerbrandt, L. K. and Cherkin, A. (1979). Auto radiographic distribution of L-proline in chicks after intracerebral injection. Physiol Behav, 22(4); 693-695.
11.Dee, M.G., Spears, L.C., Stanely, B.G. (1993). Lateral hypothalamic injection of glutamate, Kainic acid, N-methyl–D-aspartic acid rapidly elicit intense transient eating in Rats. Brain Res, 613; 8 -95.
12.Denbow, D.M., Van kery, HP., Cherry, J.A. (1982). Feeding and drinking response of young chicks to injection of serotonin into the lateralventricle of the brain. Poult Sci, 61; 150 -155.
13.Denbow, D.M., Meade, S., Robertson, A. (2000). Leptin-induced decrease in foodintake in chickens. Physiology & Behavior, 69; 359-362.
14.Donnerer, J., Liebmann, I. (2009). Evidence for opioid-induced release of glutamate in guinea pig longitudinal muscle–myenteric plexus strip. Neuroscience Letters, 462; 118–120.
15.Elena, H., Chartoff, E. H., Connery, H. S. (2014). It’s MORe exciting than mu: crosstalk between mu opioid receptors and glutamatergic transmission in the mesolimbic dopamine system. Pharmacol, 27; 5-16.
16.Farahmandfar, M., Karimian, S.M., Zarrindast, M.R., Kadivar, M., Afrouzi, H., Naghdi, N. (2011). Morphine sensitization increases the extracellular level of glutamate in CA1 of rat hippocampus via µ-opioid receptor. Neurosci Letters, 494; 130–134.
17.Filizola, M., Devi, L. A. (2013). Grand opening of structure-guided design for novel opioids.Trends Pharmacol Sci, 34(1); 6-12.
18.Furuse, M., Matsumoto, M., Saito, N., Sugahara, K., Hasegawa, S. (1997). The central corticotropin-releasing factor and glucagon-like peptide-1 in food intake of the neonatal chick. Eur J Pharmacol, 339(2-3); 211-214.
19.Hernandez, F. T. J. A. (2005). Effect of monosodium glutamate given orally on appetite control(a new theory for the obesity epidemic). An R Acad Nac Med, 122(2); 341-355.
20.Huang, X., Fan, Y., Zhang, H., Wang, P., Yuan, J., Li, M. and et al. (2008). Serum leptin and soluble leptin receptor in non-alcoholic fatty liver disease. World J Gastroenterol, 14(18); 2888-2893.
21.Kanjhan, R. (1995). Opioids and pain. Clin Exp Pharmacol Physio, 22(6-7); 397-403.
22.Kuenzel, W. J., Beck, M.M., Teruyama, R. (1999). Neural sites and pathways regulating food intake in birds:A comparative analysis to mammalian systems. J Exper zool, 283; 384-394.
23.Mena, JD., Selleck, RA., Baldo, BA. (2013). Mu-opioid stimulation in rat prefrontal cortex engages hypothalamic orexin/hypocretin-containing neurons, and reveals dissociable roles of nucleus accumbens and hypothalamus in cortically driven feeding. J Neurosci, 33(47);18540 –18552.
24.Minami, M. (1995). Molecular biology of the opioid receptors : structures functions and distributions . Neurosci, R. 23; 121-45.
25.Morley, J. E., Levine, A. S., Grace, M., Kneip, J., Zeugner, H. (1983). The effect of the opioid-benzodiazepine, tifluadom, on ingestive behaviors. Eur J Pharmacol, 93(3-4); 265-269.
26.Parker, K. E., Johns, H. W., Floros, T. G., Will, M. J. (2014). Central amygdale opioid transmission is necessary for increased high-fat intake following 24-h food deprivation, but not following intra-accumbens opioid adminis tration. Behav Brain Res, 260; 131-138.
27.Paschoalini, M.N., Freitas, C.G., Decarvalho, N.A., Seidler, H.B., Zeni, L.A. (2000). Glutamateergic control of food intakein pigeons. Pharmacol. Biochem. Behav., 65; 67-74.
28.Platenik, J., Kuramoto, N. and Yoneda, Y. (2000). Molecular mechanisms associated with long-term consolidation of the NMDA signals. Life Science, 67; 335-364.
29.Richards, M. P., Proszkowiec-Weglarz, M. (2007). Mechanisms regulating feed intake, energy expenditure, and body weight in poultry. Poul Sci, 86; 1478–1490.
30.Riedel, G., Platt, B., and micheau, J. (2003). Glutamate receptor function in learning and memory. 5Behavioral Brain Research, 140; 1-47.
31.Saito, E. S., Kaiya, H., Tachibana, T., Tomonaga, S., Denbow, D. M., Kangawa, K. (2005). Inhibitory effect of ghrelin on food intake is mediated by the corticotropin-releasing factor system in neonatal chicks. Regul Pept, 125(1-3); 201-208.
32.Sepulveda, M. J., Hernandez, L., Rada, P., Tucci, S., Contreras, E. (1998). Effect of precipitated with drawal on extra cellular glutamate and aspartate in the nucleus accumbens of chronically morphine-treated rats: an in vivo microdialysis study. Pharmacol.Biochem. Behav, 60; 255–262.
33.Stanley, B.G., Ha, L.H., Spears, L.C. (1993). Lateral hypothalamic injections of glutamate, kainic acid, D,L-amino-3-hydroxy-5-methyl-isoxazole propionic acid or Nmethyl-D-aspartic acid rapidly elicit intense transient eating in rats. Brain Res, 630; 41-49.
34.Tikka, T.M., Koistinaho, J.E. (2001). Minocycline provides neuroprotection against N-Methyl-D-aspartate neurotoxicity by inhibiting, microglia. J Immunology, 166; 7527-7533.
35.Trujillo, K.A., Akil,H. (1991). Inhibition of morphine tolerance and dependence by the NMDA receptor antagonist MK-801. Science, 251; 85-87.
36.Van Tienhoven, A., Juhasz, L. P. (1962). The chicken telencephalon, diencephalon and mesencephalon in sterotaxic coordinates. J Comp Neurol, 118(2); 185-197.
37.Wynne, K., Standley, S., McGown, B., Bloom, S. (2005). Appetite control. J Clin Endocrinol Metab, 184(2); 291-318.
38.Yanagita, K., Shiraishi, J., Fujita, M., Bungo, T. (2008). Effects of N-terminal fragments of β-endorphin on feeding in chicks. Neurosci Lett, 442(2); 140-142.
39.Zhang, C., Moss, I. R. (1995). Age-related mu-, delta- and kappa-opioid ligands in respiratory-related brain regions of piglets: effect of prenatal cocaine. Brain Res Dev Brain Res, 87(2); 188–193.